ทฤษฎีความน่าจะเป็น
จากวิกิพีเดีย สารานุกรมเสรี
ทฤษฎีความน่าจะเป็น คือการศึกษาความน่าจะเป็นแบบคณิตศาสตร์
นักคณิตศาสตร์จะมองความน่าจะเป็นว่าเป็นตัวเลขระหว่างศูนย์กับหนึ่ง ที่กำหนดให้กับ "เหตุการณ์" (ความน่าจะเป็นที่เท่ากับ 0 ก็คือไม่มีโอกาสที่เหตุการณ์นั้นจะเกิดขึ้น แต่ถ้าความน่าจะเป็นเท่ากับ 1 แสดงว่าเหตุการณ์เหล่านั้นเกิดขึ้นได้อย่างแน่นอน) ที่เกิดขึ้นแบบสุ่ม ความน่าจะเป็น P(E) ถูกกำหนดให้กับเหตุการณ์ E ตามสัจพจน์ของความน่าจะเป็น
ความน่าจะเป็นที่เหตุการณ์ E จะเกิดขึ้น เมื่อ กำหนด ให้อีกเหตุการณ์ F เกิดขึ้ัน เรียกว่าความน่าจะเป็นมีเงื่อนไข ของ E เมื่อให้ F โดยค่าความน่าจะเป็นคือ (เมื่อ P(F) ไม่เป็นศูนย์) ถ้าความน่าจะเป็นมีเงื่อนไขของ E เมื่อให้ F มีค่าเช่นเดียวกับความน่าจะเป็น (แบบไม่มีเงื่อนไข) ของ E เราจะกล่าวว่าเหตุการณ์ E และ F เป็นเหตุการณ์ที่เป็นอิสระต่อกันเชิงสถิติ เราจะสังเกตได้ว่าความสัมพันธ์นี้เป็นความสัมพันธ์สมมาตร ทั้งนี้เนื่องจากการเป็นอิสระต่อกันนี้เขียนแทนได้เป็น .
แนวคิดหลักของทฤษฎีความน่าจะเป็นคือตัวแปรสุ่มและการแจกแจงความน่าจะเป็น โปรดดูบทความหลักสำหรับข้อมูลเพิ่มเติม
ทฤษฎีความน่าจะเป็นมีหลายแนวคิด แนวคิดหนึ่งที่ได้รับความนิยมมากในสาขาปัญญาประดิษฐ์ และเศรษฐศาสตร์คือ ทฤษฎีความน่าจะเป็นแบบเบย์
[แก้] แหล่งข้อมูลอื่น
- ทฤษฎีความน่าจะเป็น จากสารานุกรมไทยสำหรับเยาวชน
- ความน่าจะเป็น จากเว็บโรงเรียนดาราวิทยาลัย
- โจทย์ตัวอย่างความน่าจะเป็น จากเว็บโรงเรียนราชินีบูรณะ
ทฤษฎีความน่าจะเป็น เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น ข้อมูลเกี่ยวกับ ทฤษฎีความน่าจะเป็น ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ |
จากสุตรทฤษดีการนับ (n) = n!
(r) — (n-r)! r!