New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
แคลคูลัส - วิกิพีเดีย

แคลคูลัส

จากวิกิพีเดีย สารานุกรมเสรี

หัวข้อที่เกี่ยวข้องกับแคลคูลัส

ทฤษฎีบทมูลฐานของแคลคูลัส | ฟังก์ชัน | ลิมิตของฟังก์ชัน | ความต่อเนื่อง | แคลคูลัสกับพหุนาม | ทฤษฎีบทค่าเฉลี่ย | แคลคูลัสเวกเตอร์ | แคลคูลัสเทนเซอร์

อนุพันธ์

กฎผลคูณ | กฎผลหาร | กฎลูกโซ่ | อนุพันธ์โดยปริยาย | ทฤษฎีบทของเทย์เลอร์

ปริพันธ์
การหาปริพันธ์โดยการแทนค่า | การหาปริพันธ์เป็นส่วน | การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ | การหาปริพันธ์แบบจาน | การหาปริพันธ์ด้วยเชลล์ | การหาปริพันธ์แบบต่าง ๆ

แคลคูลัส เป็นสาขาหลักของคณิตศาสตร์ซึ่งพัฒนามาจากพีชคณิต เรขาคณิต และปัญหาทางฟิสิกส์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้

แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้. ทฤษฎีของอนุพันธ์หลายส่วนได้แรงบันดาลใจจากปัญหาทางฟิสิกส์.

แนวคิดที่สองคือ แคลคูลัสเชิงปริพันธ์ (Integral Calculus) เป็นทฤษฎีที่ได้แรงบันดาลใจจากการคำนวณหาพื้นที่หรือปริมาตรของรูปทรงทางเรขาคณิตต่าง ๆ. ทฤษฎีนี้ใช้กราฟของฟังก์ชันแทนรูปทรงทางเรขาคณิต และใช้ทฤษฎีปริพันธ์ (หรืออินทิเกรต) เป็นหลักในการคำนวณหาพื้นที่และปริมาตร.

ทั้งสองแนวคิดที่กำเนิดจากปัญหาที่ต่างกันกลับมีความสัมพันธ์กันลึกซึ้ง โดยทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า แท้จริงแล้วทฤษฎีทั้งสองเปรียบเสมือนเป็นด้านทั้งสองของเหรียญอันเดียวกัน นั่นคือเป็นสิ่งเดียวกันเพียงแต่มองคนละมุมเท่านั้น (โดยคร่าว ๆ เรากล่าวได้ว่าอนุพันธ์และปริพันธ์เป็นฟังก์ชันผกผันของกันและกัน). ในการสอนแคลคูลัสเพื่อความเข้าใจตัวทฤษฎีอย่างลึกซึ้ง ควรกล่าวถึงทั้งสองทฤษฎีและความสัมพันธ์นี้ก่อน แต่การศึกษาในปัจจุบันมักจะกล่าวถึงแคลคูลัสเชิงอนุพันธ์ก่อนเพียงอย่างเดียว เนื่องจากนำไปใช้งานได้ง่ายกว่า.

อนึ่ง การศึกษาแคลคูลัสอย่างละเอียดในเวลาต่อมา ได้ทำให้เกิดศาสตร์ใหม่ ๆ ทางคณิตศาสตร์มากมาย เช่น คณิตวิเคราะห์ และ ทฤษฎีการวัด เป็นต้น

สารบัญ

[แก้] ประวัติ

ต้นกำเนิดของแคลคูลัสเชิงปริพันธ์ย้อนไปถึงยุคกรีกโบราณ ยูโดซัส มักจะเป็นที่รู้จักกันในนามของผู้ที่ค้นพบ วิธีการแจงกรณี ซึ่งทำให้สามารถคำนวณหาพื้นที่และปริมาตรได้ อาร์คิมิดีส ได้พัฒนาวิธีการนี้ต่อ และได้พัฒนาวิธีการช่วยคำนวณ ซึ่งคล้ายคลึงกับแนวคิดในปัจจุบันด้วย ไลบ์นิซ และ นิวตัน มักจะได้รับการยอมรับว่าเป็นผู้ที่คิดค้นแคลคูลัสขึ้นมา โดยเฉพาะการค้นพบทฤษฎีบทมูลฐานของแคลคูลัส

มีการโต้เถียงกันว่านิวตันหรือไลบ์นิซ ที่เป็นผู้ที่ค้นพบแนวคิดหลักของแคลคูลัสก่อน ความจริงนั้นไม่มีใครรู้ได้ สิ่งที่ยิ่งใหญ่ที่สุด ที่ไลบ์นิซได้พัฒนาให้กับแคลคูลัส คือ เครื่องหมายของเขา เขามักจะใช้เวลาเป็นวัน ๆ นั่งคิดถึงสัญลักษณ์ที่เหมาะสม ที่จะแทนที่แนวคิดทางคณิตศาสตร์ อย่างไรก็ตาม การโต้เถียงกันระหว่างไลบ์นิซ และนิวตัน ได้แบ่งแยกนักคณิตศาสตร์ที่พูดภาษาอังกฤษ ออกจากนักคณิตศาสตร์ในยุโรป เป็นเวลานานหลายปี ซึ่งทำให้คณิตศาสตร์ในอังกฤษล้าหลังกว่ายุโรปเป็นเวลานาน เครื่องหมายที่นิวตันใช้นั้น คล่องตัวน้อยกว่าของไลบ์นิซอย่างเห็นได้ชัด แต่ก็ยังใช้กันในอังกฤษจน Analytical Society ได้ใช้เครื่องหมายของไลบ์นิซในศตวรรษที่ 19 ตอนต้น สันนิษฐานกันว่า นิวตันค้นพบแนวคิดเกี่ยวกับแคลคูลัสก่อน แต่อย่างไรก็ตาม ไลบ์นิซเป็นผู้ที่เผยแพร่ก่อน ทุกวันนี้เป็นที่เชื่อกันว่า ทั้งนิวตันและไลบ์นิซต่างก็ค้นพบแคลคูลัสด้วยตนเอง

ผู้ที่ได้ชื่อว่าเป็นผู้พัฒนาวิชาแคลคูลัสนอกจากนี้คือ เดส์การตส์, Barrow, เดอ แฟร์มาต์, ฮอยเก้นส์ และ วอลลิส โดยเฉพาะ เดอ แฟร์มาต์ ซึ่งบางครั้งได้รับการยกย่องว่าเป็น บิดาแห่งแคลคูลัสเชิงอนุพันธ์. นักคณิตศาสตร์ชาวญี่ปุ่น โควะ เซกิ ซึ่งมีชีวิตอยู่ในช่วงเวลาเดียวกันกับ ไลบ์นิซ และนิวตัน ได้ค้นพบหลักการพื้นฐานบางอย่างเกี่ยวกับ แคลคูลัสเชิงปริพันธ์ แต่เขาไม่เป็นที่รู้จักในโลกตะวันตกในขณะนั้น และเขาก็ไม่ได้ติดต่อกับนักวิชาการชาวตะวันตกเลย

[แก้] แคลคูลัสเชิงอนุพันธ์

อนุพันธ์ (derivative) คือการหาค่าความเปลี่ยนแปลงของตัวแปรหนึ่ง เมื่ออีกตัวแปรหนึ่งเปลี่ยนแปลงในปริมาณที่น้อยมากๆ บางทีอนุพันธ์ที่เราจะได้พบครั้งแรกในโรงเรียนคือ สูตร อัตราเร็ว = ระยะทาง/เวลา สำหรับวัตถุที่เคลื่อนที่ด้วยอัตราเร็วคงที่ อัตราเร็วของคุณซึ่งเป็นอนุพันธ์ที่บอกการเปลี่ยนแปลงตำแหน่งในระยะเวลาหนึ่ง วิชาแคลคูลัสพัฒนาขึ้น เพื่อจัดการกับปัญหาที่ซับซ้อนและเป็นธรรมชาติกว่านี้ ซึ่งอัตราเร็วของคุณอาจเปลี่ยนแปลงได้

เมื่อเรากล่าวถึงรายละเอียดแล้ว แคลคูลัสเชิงอนุพันธ์ นิยามอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง (อนุพันธ์) ระหว่างค่าของฟังก์ชัน กับตัวแปรของฟังก์ชัน นิยามจริงๆ ของอนุพันธ์คือ ลิมิตของอัตราส่วนในการปลี่ยนแปลง (difference quotient). อนุพันธ์คือหัวใจของวิทยาศาสตร์กายภาพ กฎการเคลื่อนที่ของนิวตัน แรง = มวล×ความเร่ง มีความหมายในแคลคูลัส เพราะว่า ความเร่งเป็นอนุพันธ์ค่าหนึ่ง ทฤษฎีแม่เหล็กไฟฟ้าของแมกซ์เวล และทฤษฎีแรงโน้มถ่วงของไอน์สไตน์ (สัมพัทธภาพทั่วไป) นั่นได้กล่าวถึงด้วยภาษาของแคลคูลัสเชิงอนุพันธ์ เช่นเดียวกันกับทฤษฎีพื้นฐานของวงจรไฟฟ้า

อนุพันธ์ของฟังก์ชัน กล่าวถึงกราฟของฟังก์ชันนั้นในช่วงสั้น ๆ ซึ่งทำให้เราสามารถหาจุดสูงสุด และจุดต่ำสุด ของฟังก์ชันได้ เพราะว่าที่จุดเหล่านั้นกราฟจะขนานกับแกนราบ ดิเฟอเรนเชียล แคลคูลัสยังมีการประยุกต์ใช้อื่นๆอีก เช่น ระเบียบวิธีของนิวตัน (Newton's Method) ซึ่งเป็นวิธีในการหาค่ารากของฟังก์ชัน โดยการประมาณค่าโดยเส้นสัมผัส ดังนั้นแคลคูลัสเชิงอนุพันธ์ จึงสามารถนำไปประยุกต์ใช้กับหลากหลายคำถาม ซึ่งถ้ามองแค่ผิวเผินอาจไม่คิดว่า ไม่อาจใช้แคลคูลัสจัดการได้

[แก้] แคลคูลัสเชิงปริพันธ์

แคลคูลัสเชิงปริพันธ์ศึกษาวิธีการหาปริพันธ์ (อินทิกรัล, Integral) ของฟังก์ชัน ซึ่งอาจนิยามจากลิมิตของผลรวมของพจน์ (ซึ่งเรียกว่าลิมิตของผลรวมรีมันน์) แต่ละพจน์นั้นคือพื้นที่ที่เป็นสี่เหลี่ยมผืนผ้าแต่ละแถบใต้กราฟของฟังก์ชัน ทำให้การอินทิเกรตเป็นวิธีที่ได้ผลวิธีหนึ่งในการหาพื้นที่ใต้กราฟ และพื้นที่ผิว และปริมาตรของแข็งเช่นทรงกลมและทรงกระบอก

[แก้] พื้นฐานของแคลคูลัส

พื้นฐานที่เคร่งครัดของแคลคูลัส มีฐานมาจาก แนวคิดของฟังก์ชัน และลิมิต มันรวมเทคนิคของพีชคณิตพื้นฐาน และการอุปนัยเชิงคณิตศาสตร์ การศึกษาพื้นฐานของแคลคูลัสสมัยใหม่ รู้จักกันในชื่อ การวิเคราะห์เชิงจริง ซึ่งประกอบด้วย นิยามที่เคร่งครัด และบทพิสูจน์ของทฤษฎีของแคลคูลัส เช่นทฤษฎีการวัด และการวิเคราะห์เชิงฟังก์ชัน

[แก้] ทฤษฎีบทมูลฐานของแคลคูลัส

ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า การหาอนุพันธ์และการหาปริพันธ์เป็นวิธีการที่ตรงกันข้ามกัน กล่าวคือ ถ้าเราสร้างฟังก์ชันที่เป็นปริพันธ์ของฟังก์ชันหนึ่งขี้นมา อนุพันธ์ของฟังก์ชันที่เราสร้าง ก็จะเท่ากับฟังก์ชันนั้น นอกจากนี้ เรายังหาปริพันธ์จำกัดเขตได้ด้วยการกำหนดค่าให้กับปฏิยานุพันธ์

ทฤษฎีบทมูลฐานของแคลคูลัสเขียนในรูปสัญลักษณ์คณิตศาสตร์ได้ดังนี้: ถ้า f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และ F เป็นปฏิยานุพันธ์ของ f บนช่วง [a, b] แล้ว

\int_{a}^{b} f(x)\,dx = F(b) - F(a)
และสำหรับทุก x ในช่วง [a, b] จะได้ว่า
\frac{d}{dx}\int_a^x f(t)\, dt = f(x)

ความจริงข้อนี้ปรากฏแก่ทั้งนิวตัน และไลบ์นิซ ซึ่งเป็นกุญแจนำไปสู่ การขยายผลลัพธ์เชิงวิเคราะห์อย่างมากมายหลังจากงานของทั้งสองเป็นที่รู้จัก. ความเชื่อมโยงนี้ ทำให้เราสามารถย้อนความเปลี่ยนแปลงทั้งหมดในฟังก์ชันในช่วงหนึ่ง จากอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง โดยการหาปริพันธ์ของส่วนหลัง. ทฤษฎีบทมูลฐานนี้ยังให้วิธีในการคำนวณหา ปริพันธ์จำกัดเขต ด้วยวิธีทางพีชคณิตเป็นจำนวนมาก โดยไม่ต้องใช้วิธีการหาลิมิต ด้วยการหาปฏิยานุพันธ์. ทฤษฎีบทนี้ยังอนุญาตให้เราแก้สมการเชิงอนุพันธ์ ซึ่งคือสมการที่เกี่ยวข้องกันระหว่าง ฟังก์ชันที่ไม่ทราบค่า และอนุพันธ์ของมัน. สมการเชิงอนุพันธ์นั้นมีอยู่ทั่วไปในวิทยาศาสตร์

[แก้] การประยุกต์ใช้

การพัฒนาและการใช้แคลคูลัสได้ขยายผลไปแทบทุกส่วนของการใช้ชีวิตในยุคใหม่ มันเป็นพื้นฐานของวิทยาศาสตร์เกือบทุกสาขาโดยเฉพาะ ฟิสิกส์ การพัฒนาสมัยใหม่เกือบทั้งหมด เช่น เทคนิคการก่อสร้าง การบิน และเทคโนโลยีอื่น ๆ เกือบทั้งหมด มีพื้นฐานมาจากแคลคูลัส

แคลคูลัสได้ขยายไปสู่ สมการเชิงอนุพันธ์ แคลคูลัสเวกเตอร์ แคลคูลัสของการเปลี่ยนแปลง การวิเคราะห์เชิงซ้อน แคลคูลัสเชิงเวลา แคลคูลัสกณิกนันต์ และ ทอพอโลยีเชิงอนุพันธ์

[แก้] ดูเพิ่มเติม

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu