New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
乌鸦悖论 - Wikipedia

乌鸦悖论

维基百科,自由的百科全书

一只黑乌鸦
一只黑乌鸦
非黑非乌鸦
非黑非乌鸦

乌鸦悖论,也叫做亨佩尔的乌鸦亨佩尔悖论,是二十世纪四十年代德国逻辑学家卡尔·古斯塔夫·亨佩尔(Carl Gustav Hempel)为了说明归纳法违反直觉而提出的一个悖论

目录

[编辑] 问题的综述

几千年以来,无数人观察了许多事务,比如地心引力法则,人们趋于相信其极可能是真理。这种类型的推理可以总结成“归纳法原理”:

如果实例 X 被观察到和论断 T 相符合,那么论断 T 正确的概率增加。

亨佩尔给出了归纳法原理的一个例子: “所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。在每一次观察之后,我们对“所有乌鸦都是黑的”的信任度会逐渐提高。归纳法原理在这里看起来合理的。

现在问题出现了。“所有乌鸦都是黑的” 的论断在逻辑上和“所有不是黑的东西不是乌鸦”等价。如果我们观察到一只苹果,它不是黑的,也不是乌鸦,那么这次观察必会增加我们对“所有不是黑的东西不是乌鸦”的信任度,因此更加确信“所有的乌鸦都是黑的”!这个问题被总结成:

我从未见过紫牛,
但若我见到一头,
乌鸦皆黑的概率,
更加可能是一么?

I never saw a purple cow
But if I were to see one
Would the probability ravens are black
Have a better chance to be one?

(改寫自吉利特·伯吉斯(en:Gelett Burgess)的诗)


[编辑] 解决提議

解决它和直觉的冲突,哲学家们提出了一些方法。美国逻辑学家纳尔逊·古德曼(en:Nelson Goodman)建议对我们的推理添加一些限制,比如永远不要考虑支持论断“所有P满足Q”且同时也支持“没有P满足Q” 的实例。

其他一些哲学家质疑“等价原理”。也许红苹果能够增加我们对论断“所有不是黑的东西不是乌鸦”的信任度,而不增加我们对 “所有乌鸦都是黑色的”信任。这个提议受到质疑,因为你不能对等价的两个命题有不同的信任度,如果你知道他们都是真的或都是假的。

古德曼,以及其后的威拉德·冯·奥曼·蒯因,使用术语「projectible predicate」来描述这些类似于「乌鸦」和「黑色」的命题, 所有这类命题是支持归纳推理法的;而「非projectible predicate」则为与只相反的后者, 如「非黑」和「非乌鸦」这些命题并不支持归纳推理法。蒯因还提出一个需要证实的猜想:如果任何命题是projectible的;在无限物件组成的全集中,一个projectible的命题的补集永远是非projectible的。

这样一来,虽然「所有乌鸦都是黑的」和「所有不是黑的东西都不是乌鸦」这两个命题所拥有的信任度必须相等,但只有「黑色的乌鸦」才能同时增加两者的信任度,而「非黑色的非乌鸦」并不增加任何一个命题的信任度。

还有些哲学家认为其实这个命题是完全正确的,出错的是我们自己的逻辑。其实观察到一个红色的苹果确实会增加乌鸦都是黑色的可能性!这就相当于:如果有人把宇宙中所有不是黑的物体都给你看,而你发现所有的物体都不是乌鸦,那你就完全可以断定所有乌鸦都是黑的了。这个「悖论」看上去荒谬只是因为宇宙中「不是黑的」物体远远多于「乌鸦」,所以发现一个「不是黑的」物体只增加了极其微小的对于「乌鸦都是黑的」的信任度,而相对而言,每发现一只黑的乌鸦就是一个有力的证据了。

[编辑] zh-cn:贝叶斯;zh-tw:貝氏定理

除了以上的陈述以外,「归纳法原理」还有另一种形式,就是贝叶斯推理

X 为支持论断 T 的一个实例, 而 I 表示我们所有的已知信息。

\Pr(\bullet | \circ) 表示论断 T 成立的几率,已知 XI 都是成立的,可以推得,

\Pr(T|XI) = \frac{\Pr(T|I) \cdot \Pr(X|TI)}{\Pr(X|I)}

这里 Pr(T | I) 表示在只有 I 是已知成立的情况下,T 成立的几率;Pr(X | TI) 表示在 TI 都已知成立的情况下,X 成立的几率;而 Pr(X | I) 表示在只有 I 是已知成立的情况下,X 成立的几率.

利用这个原理,这个悖论就不会出现了。如果有人随机选一个「苹果」,那么他看到一个红苹果的几率和「乌鸦」的颜色是完全没有关系的。这时分子等于分母,所以分数等于1,所以以上讨论的几率不会改变。所以看见一只红色的苹果不会增加人们对「乌鸦都是黑色的」的信任度。

而如果那人是随叫随到选择一个非黑的「物件」,那个物件正好是一个红的苹果,那么我们对得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对「乌鸦都是黑色的」的信任度。

其实,随着一个人看到的不是黑色的东西的增加(并发现其中没有乌鸦),「乌鸦都是黑色的」的几率会趋向于1。

[编辑] 参见

[编辑] 参考书目

  • Hempel, C. G. A Purely Syntactical Definition of Confirmation. J. Symb. Logic 8, 122-143, 1943.
  • Hempel, C. G. Studies in Logic and Confirmation. Mind 54, 1-26, 1945.
  • Hempel, C. G. Studies in Logic and Confirmation. II. Mind 54, 97-121, 1945.
  • Hempel, C. G. Studies in the Logic of Confirmation. In Marguerite H. Foster and Michael L. Martin, eds. Probability, Confirmation, and Simplicity. New York: Odyssey Press, 1966. Pp 145-183
  • Falletta, Nicholas. The Paradoxicon: a Collection of Contradictory Challenges, Problematical Puzzles, and Impossible Illustrations. 1983. Pp 126-131. ISBN 0385179324

[编辑] 外部链接

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu