行星轨道
维基百科,自由的百科全书
在物理學中,軌道是一個物體在有心力,像是重力,的作用下,繞行另一個物體的路徑。
目录 |
[编辑] 历史
轨道首先由约翰内斯•刻卜勒通过数学方法分析,并得出著名的3个行星运动定律。第一,他发现太阳系中行星轨道不是人们想象的圆形,而是椭圆的,太阳也不是位于轨道中心,而是在一个焦点(几何)上。第二他发现行星的轨道速度,也不象以前认为的那样,是不恒定的,此速度依赖于行星到太阳的距离。第三,他发现了适合太阳系所有行星轨道性质的通用关系。对每个星球而言,到太阳距离的立方(以天文单位(AU)计算)等于行星轨道周期的平方(用地球年计算)。例如木星,它的到太阳距离近似等于5.2AU,轨道周期为11.86地球年。5.2的立方正好等于11.86地平方。
艾萨克·牛顿 通过他的万有引力理论推导证明了开普勒定律。一般而言,物體在重力作用下的軌道式二次圓錐曲線。牛頓顯示,一對物體在互相環繞的軌道上時,相對於質心的距離與質量成反比。如果一个天体质量比另一个大的多,採用大質量物體的質量中心來取代共同的質量中心不僅方便,結果也是很接近的。
[编辑] 行星轨道
在一個行星系統內,行星、矮行星、小行星、彗星和空間中的碎片,都以橢圓軌道繞著中心的恆星運轉著。有些以拋物線或雙曲線軌道繞著中心恆星的彗星,則被認為是未受到這顆恆星的重力束縛住,而不是這個行星系統內的天體。迄今,在太陽系內還沒有發現軌道很明確是雙曲線的彗星。在行星系統內,如果依對天體的質量中心是在大質量的天體之內,另一個天體便是跟隨這這個天體的衛星或人造衛星。
由於相互間的引力攝動,太陽系內行星軌道的扁率會間逐漸變動。水星太陽系內最小的行星,軌道有著最大的扁率,在當前這世紀,火星軌道的扁率是第二大的,軌道扁率最小的則是金星和海王星。
當兩個天體互相環繞,近星點是這兩個天體彼此最接近的位置,遠星點則是這兩個天體彼此距離最遠的位置。.
在橢圓軌道上,繞行與被繞行系統的質心將在兩者軌道的一個焦點上,在另一個焦點上則沒有任何物體。當行星接近近星點時,行星的速度將會增加,而在接近遠星點時,行星的速度將會降低。
參見:克卜勒行星運動定律
[编辑] 了解軌道
有一些普通的方法可以了解軌道:
- 當物體被拋出去時,會向著原先圍繞旋轉的對象掉落。然而,如果速度夠快的話,軌道的彎曲度會使他落在被圍繞物體的前方。
- 一種力量,像是重力,會將在直線上飛行的物體拉入彎曲的路徑上。
- 當物體掉落時,如果速度夠快(有足夠的切線速度),便會脫離原先的軌道。使用數學分析來理解是非常有用的,因為物體的運動可以在三度空間座標中用相對於質心的一維震盪來描素。
加農炮發射的例子(見下圖),是最常被用來作為行星附近(即地球附近)軌道的說明圖。想像一門被架在高山頂上的加農炮,以平行的方向將砲彈發射出去。如果這座山的高度足以超越大氣層,我們便能忽略空氣對砲彈所產生的阻力(摩差力)。
如果砲彈以較低的速度發射出去,彈道的曲線將會擊中地面上的(A)點,當發射的速度增加時,砲彈將擊中離加農炮較遠的(B)點和更遠的(C)點,然而地面與彈道弧線的距離仍然會縮減,因此砲彈依然落在地面上。但如果砲彈已足夠快的速度發射,地面的曲度和砲彈落下的彈道弧度相同時,砲彈便在軌道(D)上運行了。像(D)這樣的軌道式圓形的,而如果砲彈發射的速度再增加,跪到便會成為橢圓的(E)或更為橢圓的(F)。當速度增加到所謂的逃逸速度時,軌道便會從橢圓變成為拋物線,砲彈也將飛至無窮遠處不再回來。如果速度更快,軌道將會成為雙曲線。
[编辑] 牛頓運動定律
在只有兩個物體的系統中,她們只會因為自身的重力相互影響著,她們的軌道能用牛顿运动定律和萬有引力確實的計算。簡單的說,力量的總和就是質量與加速度的乘積,重力正比於質量,而與距離的平方成反比。
在計算上,可以很方便的使用座標系統,將重的物體置於中心(原點),我們可以說輕的物體在軌道上繞著重的物體運轉。
一個靜止不動的物體,在距離大質量物體較遠時的位能,比較近時要高,因為他將向大質量物體掉落下去。
兩個物體的互動,軌道是二次圓錐曲線,可以是開放(不再返回)或封閉(複回)的軌道,則全看系統動能+位能的總能量。在開放軌道的系統中,在軌道上每一點的速度都會大於在那個點的逃逸速度,而再封閉軌道上每一個點的速度都會低於逃逸速度。
一個開放軌道的形狀是雙曲線(當軌道速度大於逃逸速度)或是拋物線 (當軌道速度等於逃逸速度),這兩個物體在軌道上會先彼此接近,當兩個物體到達最接近的距離的前後,軌道開始彎曲,然後兩個物體再彼此遠離。一些來自太陽系外的彗星,就是這種軌道。
封閉軌道的形狀是橢圓形,在一些特殊的狀況下,環繞的物體與中心保持等距離,也就是軌道是圓形。換言之,像在軌道上最接近地球的點叫作近地點,當圍繞著另一個不是地球的天體運轉時,最接近的點就可以叫做近星點(近拱點),衛星在軌道上離地球最遠的點叫遠地點(遠星點,也叫做遠拱點)。連結近拱點和遠拱點的線叫做拱點線(line-of-apsides),這是橢圓的主軸,是橢圓內部最長的部份。
在封閉軌道上的天體經過一定的時間後會在重複他的路線,這就是刻卜勒由經驗所獲得的定律,可以使用牛頓定律推導出來。這些公式的描述如下:
- The orbit of a planet around the Sun is an ellipse, with the Sun in one of the focal points of the ellipse. Therefore the orbit lies in a plane, called the orbital plane. The point on the orbit closest to the attracting body is the periapsis. The point farthest from the attracting body is called the apoapsis. There are also specific terms for orbits around particular bodies; things orbiting the Sun have a perihelion and aphelion, things orbiting the Earth have a perigee and apogee, and things orbiting the Moon have a perilune and apolune (or, synonymously, periselene and aposelene). An orbit around any star, not just the Sun, has a periastron and an apastron
- As the planet moves around its orbit during a fixed amount of time, the line from Sun to planet sweeps a constant area of the orbital plane, regardless of which part of its orbit the planet traces during that period of time. This means that the planet moves faster near its perihelion than near its aphelion, because at the smaller distance it needs to trace a greater arc to cover the same area. This law is usually stated as "equal areas in equal time."
- For each planet, the ratio of the 3rd power of its semi-major axis to the 2nd power of its period is the same constant value for all planets.
Except for special cases like Lagrangian points, no method is known to solve the equations of motion for a system with four or more bodies. The 2-body solutions were published by Newton in Principia in 1687. In 1912, K. F. Sundman developed a converging infinite series that solves the 3-body problem, however it converges too slowly to be of much use.
Instead, orbits can be approximated with arbitrarily high accuracy. These approximations take two forms.
One form takes the pure elliptic motion as a basis, and adds perturbation terms to account for the gravitational influence of multiple bodies. This is convenient for calculating the positions of astronomical bodies. The equations of motion of the moon, planets and other bodies are known with great accuracy, and are used to generate tables for 天文导航.
微分方程 form is used for scientific or mission-planning purposes. According to Newton's laws, the sum of all the forces will equal the mass times its acceleration (F = ma). Therefore accelerations can be expressed in terms of positions. The perturbation terms are much easier to describe in this form. Predicting subsequent positions and velocities from initial ones corresponds to solving an 初值问题. Numerical methods calculate the positions and velocities of the objects a tiny time in the future, then repeat this. However, tiny arithmetic errors from the limited accuracy of a computer's math accumulate, limiting the accuracy of this approach.
Differential simulations with large numbers of objects perform the calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large objects have been simulated.
[编辑] 轨道运动分析
(参看轨道方程和 开普勒第一行星运动定律)
To analyse the motion of a body moving under the influence of a force which is always directed towards a fixed point, it is convenient to use 极坐标 with the origin coinciding with the centre of force. In such coordinates the radial and transverse components of the 加速度 are, respectively:
and
- .
因为力是完全径向的,加速度与力成正比, 因此横行加速度为0。可以得到,
- .
积分之后我们得到
对于任意常数h积分有
我们引入辅助变量
- .
If magnitude of the radial force is f(r) per unit mass of the orbiting body, then the elimination of the time variable from the radial component of the equation of motion yields:
- .
In the case of gravity, Newton's law of universal gravitation states that the force is proportional to the inverse square of the distance:
其中G使引力常数, m是轨道天体(行星)质量,M是中心天体(太阳)质量。带入前面的等式我们得到:
- .
So for the gravitational force – or, more generally, for any inverse square force law – the right hand side of the equation becomes a constant and the equation is seen to be the 调和方程 (up to a shift of origin of the dependent variable).
The equation of the orbit described by the particle is thus:
- ,
where φ and e are arbitrary constants of integration,
is the semi-latus rectum, and a is the 半长轴。This can be recognised as the equation of a conic section in 极坐标(r,θ).
[编辑] 轨道参数
参看: 轨道元素
For a general elliptic orbit, the relations between the axis, eccentricity, and least and largest distance are:
- 半长轴 = (近拱点 + 远拱点)/2 = 极半径
- 近拱点 = 半长轴 × (1 - 偏心率) = 最小距离
- 远拱点 = 半长轴 × (1 + 偏心率) = 最大距离
Note that there are alternative definitions for a "mean radius" or "average distance": if you average the radius over time for one orbit (平均近点角), or over the orbital angle as observed by the primary (真近点角), 就会得到不同结果。更多信息参看半长轴#天文。
[编辑] 轨道周期
参看: 轨道周期
[编辑] 轨道衰变
If some part of a body's orbit enters an atmosphere, its orbit can decay because of drag. At each periapsis, the object scrapes the air, losing energy. Each time, the orbit grows less eccentric (more circular) because the object loses kinetic energy precisely when that energy is at its maximum. Eventually, the orbit circularises and then the object spirals into the atmosphere.
The bounds of an atmosphere vary wildly. During solar maxima, the Earth's atmosphere causes drag up to a hundred kilometres higher than during solar minimums.
Some satellites with long conductive tethers can also decay because of electromagnetic drag from the Earth's magnetic field. Basically, the wire cuts the magnetic field, and acts as a generator. The wire moves electrons from the near vacuum on one end to the near-vacuum on the other end. The orbital energy is converted to heat in the wire.
Another method of artificially influencing an orbit is through the use of 太阳帆 or magnetic sails. These forms of propulsion require no propellant or energy input, and so can be used indefinitely. See 斯达 for one such proposed use.
Orbital decay can also occur due to 潮汐力 for objects below the synchronous orbit for the body they're orbiting. The gravity of the orbiting object raises tidal bulges in the primary, and since below the synchronous orbit the orbiting object is moving faster than the body's surface the bulges lag a short angle behind it. The gravity of the bulges is slightly off of the primary-satellite axis and thus has a component along the satellite's motion. The near bulge slows the object more than the far bulge speeds it up, and as a result the orbit decays. Conversely, the gravity of the satellite on the bulges applies torque on the primary and speeds up its rotation. Artificial satellites are too small to have an appreciable tidal effect on the planets they orbit, but several moons in the solar system are undergoing orbital decay by this mechanism. Mars' innermost moon Phobos is a prime example, and is expected to either impact Mars' surface or break up into a ring within 50 million years.
Finally, orbits can decay via the emission of gravitational waves. This mechanism is extremely weak for most stellar objects, only becoming significant in cases where there is a combination of extreme mass and extreme acceleration, such as with black holes or neutron stars that are orbiting each other closely.
[编辑] 地球轨道
更多细节请参看地球轨道。
(部分条目).
[编辑] 重力换算
重力加速度 G 定义为:
- 6.6742 × 10−11 N·m2/kg2
- 6.6742 × 10−11 m3/(kg·s2)
- 6.6742 × 10−11(kg/m3)-1s-2.
Thus the constant has dimension density-1 time-2. This corresponds to the following properties.
Scaling of distances (including sizes of bodies, while keeping the densities the same) gives similar orbits without scaling the time: if for example distances are halved, masses are divided by 8, gravitational forces by 16 and gravitational accelerations by 2. Hence orbital periods remain the same. Similarly, when an object is dropped from a tower, the time it takes to fall to the ground remains the same with a scale model of the tower on a scale model of the earth.
When all densities are multiplied by four, orbits are the same, but with orbital velocities doubled.
When all densities are multiplied by four, and all sizes are halved, orbits are similar, with the same orbital velocities.
These properties are illustrated in the formula
椭圆轨道的半长轴 a, of a small body around a spherical body with 半径 r and average density σ, where T 是轨道周期.
[编辑] 原子学说演化中扮演角色
When atomic structure was first probed experimentally early in the twentieth century, an early picture of the atom portrayed it as a miniature solar system bound by the coulomb force rather than by gravity. This was inconsistent with electrodynamics and the model was progressively refined as quantum theory evolved, but there is a legacy of the picture in the term orbital for the wave function of an energetically bound electron state.
[编辑] 参看
- 航天飞机
- 圆形轨道
- Clarke轨道
- 亚轨道和orbital spaceflights区别
- 椭圆轨道
- 逃逸速度
- 重力
- 重力弹弓
- 霍曼转移轨道
- 双曲线轨道
- Kepler's laws of planetary motion
- 轨道方程
- Orbital maneuver
- 轨道周期
- Orbital spaceflight
- 轨道速度
- 抛物线轨迹
- Retrograde motion
- Specific orbital energy
- Sub-orbital spaceflight
- 弹道
[编辑] 参考
- Abell, Morrison, Wolff,宇宙大爆炸,第5版,1987,Saunders College Publishing
[编辑] 外部链接
- An on-line orbit plotter: http://www.bridgewater.edu/departments/physics/ISAW/PlanetOrbit.html
- Orbital Mechanics (Rocket and Space Technology)
页面分类: 翻譯請求 | Celestial mechanics | 太阳系 | 天文学