New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
مبرهنة الكاشي - ويكيبيديا، الموسوعة الحرّة

مبرهنة الكاشي

من ويكيبيديا، الموسوعة الحرة

شكل. 1 - المفاهيم المستعملة في مثلث ما.
شكل. 1 - المفاهيم المستعملة في مثلث ما.

مبرهنة الكاشي خاصة بهندسة المثلثات و هي تعميم لمبرهنة فيتاغورس في المثلثات التي ليست لها زاوية قائمة: و هي تربط الضلع الثالث لمثلث بالضلعين الآخرين و جيب تمام الزاوية المكونة لهما.

نعتبر مثلث ABC, حيث نستعمل المفاهيم الموجودة في الشكل1: من جهة α, β و γ بالنسبة للزوايا, و من جهة أخرى a, b و c بالنسبة للأضلاع. مبرهنة الكاشي هي:

\,c^2=a^2+b^2-2ab\cos\gamma.

فهرست

[تحرير] تاريخ

شكل. 2 - مثلث ABC مع ارتفاع BH
شكل. 2 - مثلث ABC مع ارتفاع BH

في كتاب العناصر لإقليدس, نجد مقاربة هندسية لتعميم مبرهنة فيتاغورس: نجد في الكتاب2 العبارتين 12 و 13, حيث يتم التطرق لحالة مثلث عادي بزاوية منفرجة و في مثلث عادي بزوايا حادة. لكن عدم وجود الدوال المثلثية (آنذاك) و كذلك الجبر أدى إلى استعمال المساحات.

فالعبارة 12 : مربع الضلع الذي يحمل الزاوية المنفرجة أكبر من مربعي الضلعين الآخرين: و باستعمال المثلث ABC بزاوية منفرجة في A و ارتفاع H (شكل2) الصيغة تصبح: AB² = CA² + CB² + 2 CA CH.

و كان يجب انتظار العرب المسلمين لتظهر الدوال المثلثية لرؤية المبرهنة في تطورها: فالفلكي و الرياضي البتاني عمم نتيجة إقليدس في الهندسة الفضائية و التي مكنت من القيام بحساب المسافات بين النجوم. و في نفس الوقت تم إنشاء جداول للدوال المثلثية و التي أتاحت للكاشي صياغة المبرهنة في شكلها النهائي.

[تحرير] تطبيقات

مبرهنة الكاشي في تعميم لمبرهنة فيتاغورس, عندما تكون الزاوية :

γ قائمة, أو عندما يكون: cosγ = 0,  المبرهنة تصبح:\,c^2=a^2+b^2,

و عكسيا.

شكل. 3 - تطبيق المبرهنة :الكاشي زاوية أو ضلع مجهول.
شكل. 3 - تطبيق المبرهنة :الكاشي زاوية أو ضلع مجهول.

النظرية تستعمل في المثلثات(انظر شكل. 3)حل مثلث,أي تحديد:

  • الضلع الثالث لمثلث نعرف فيه زاوية و الضلعين المكونين لها:
\,c = \sqrt{a^2+b^2-2ab\cos\gamma} ;
  • زوايا مثلث نعرف فيه الأضلاع:
\,\gamma = \arccos \frac{a^2+b^2-c^2}{2ab}.

[تحرير] البرهنة

[تحرير] بتقسيم المساحات

من بين طرق البرهنة حساب المساحات، حيث يتم ملاحظة ما يلي:

  • a2, b2 و c2 هي مساحات لمربع أضلاعه على التوالي a, b و c
  • ab | cosγ | و هو ل متوازي أضلاع من جهةa و b يكونان زاوية π / 2 − γ, تغيير إشارة: cosγ تصبح الزاوية γ devient منفرجة تجعل دراسة الحالات ضرورية.
شكل. 4أ - البرهنة بالنسبة للزوايا الحادة : « طريقة التقسيم ».
شكل. 4أ - البرهنة بالنسبة للزوايا الحادة : « طريقة التقسيم ».

الشكل 4أ (جانبه) يقسم سباعي بكيفيتين مختلفتين حيث تتم البرهنة في حالة زاوية حادة. يدخل هنا :

  • بالوردي, lالمساحات a2, b2 في اليسار, و المساحات 2abcosγ و c2 في اليمين ;
  • بالأزرق, المثلث ABC, في اليمين كما في اليسار ;
  • بالرمادي, بعض المثلثات الإضافية, متطابقة مع المثلث ABC و بنفس العدد في التقسيمين.

تساوي المساحات في اليمين و اليسار يعطي

\,a^2+b^2 = c^2+2ab \cos\gamma.


شكل. 4ب - البرهنة بالنسبة للزوايا المنفرجة : « طريقة التقسيم ».
شكل. 4ب - البرهنة بالنسبة للزوايا المنفرجة : « طريقة التقسيم ».

الشكل 4ب (جانبه) يقسم سداسي بكيفيتين مختلفتين بكيفية برهن في حالة زاوية منفرجة. الشكل يبين

  • بالوردي, المساحات a2, b2 و − 2abcosγ في اليسار, و المساحات c2 في اليمين ;
  • بالأزرق, مرتين المثلث ABC, في اليمين كما في اليسار.

تساوي المساحتين يمينا و يسارا يعطي

\,a^2+b^2-2ab\cos\gamma = c^2.

[تحرير] باستعمال نظرية فيتاغورس

شكل. 5 - البرهنة باستعمال العلاقات المثلثية
شكل. 5 - البرهنة باستعمال العلاقات المثلثية

الشكل 5 (جانبه) يبين طريقة البرهنة باستعمال مبرهنة فيتاغورس في مثلث قائم الزاوية ناتج عن طريق الارتفاع : \,c^2 = (a\sin\gamma)^2 + (b-a\cos\gamma)^2

بنفس الطريقة نبرهن في حالة مثلث بزاوية منفرجة

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu