Nekonečno
Z Wikipedie, otevřené encyklopedie
Nekonečno je abstraktní pojem, který označuje kvantitu (množství) něčeho, co je tak veliké, že nemá konec (od slova konec je odvozeno slovo konečný), nemá hranici, typicky se nedá spočíst, změřit, a pokud ano, tak je větší než každé konečné číslo. Objekt, který je tak veliký, že má atributy nekonečna, se někdy nazývá přídavným jménem nekonečný.
Nekonečno má důležité místo v matematice (zvláště v geometrii a teorii množin), v historii matematiky, k jeho studiu přispěli mimo jiné čeští vědci Bernard Bolzano a Petr Vopěnka. Nekonečno vyprovokovalo mnohé úvahy i ve filosofii a teologii.
Obsah |
[editovat] Nekonečno v matematice
V geometrii se někdy běžný Eukleidovský prostor (i rovina) doplňuje různými nekonečny, „body“ s nekonečnou vzdáleností v různých směrech. Například v projektivní geometrii se každé dvě přímky protnou v jediném bodě, který můžeme chápat jako jedno konkrétní nekonečno (právě to, ve kterém se protínají všechny přímky rovnoběžné s jednou danou přímkou).
Jiná možnost je doplnit prostor jen o jedno nekonečno (vznikne tak topologická sféra).
V teorii množin se zavádějí „různá nekonečna“ (větší a menší), pro jejichž popis se používají pojmy jako kardinály (kardinální čísla) a ordinály (ordinální čísla).
[editovat] Potenciální a aktuální nekonečno
Důležitým krokem k takovému pojetí nekonečna bylo uskutečnění myšlenkového přechodu od potenciálního k aktuálnímu nekonečnu. Potenciálně nekonečná množina je v představách chápána jako konečná s možností podle potřeby přibírat další prvky. Aktuálně nekonečná množina ja pak taková, která je brána jako (nekonečný) celek. Zásadní průlom v tomto směru provedl český matematik Bernard Bolzano.
[editovat] Nekonečno ve fyzice
Ač na první pohled úplně nefyzikání (výsledkem měření fyzikální veličiny může být pouze reálné číslo), nekonečna se ve fyzice běžně vyskytují.
Asi nejčastěji se vyskytuje v nějaké limitě - z výpočetních důvodů je často snazší pracovat s nekonečnem než s konečnými kvantitami. Už jednoduchá idealizace v mechanice, hmotný bod, obsahuje „nefyzikální“ nekonečno, nekonečnou hustotu.
V horším případě se nekonečna objevují v řešení rovnic, jako důsledek nějaké fyzikální teorie. Obvykle to značí, že matematický aparát, v jakém je teorie formulována, přestává stačit. Tak například obecná teorie relativity „předpovídá“ nekonečné hodnoty různých fyzikálních veličin v singularitě. Fyzikální ínterpretace je, že teorie ve skutečnosti předpovídá meze své platnosti a pro předpovědi skutečnosti by byla nutná neexistující kvantová teorie gravitace. „Potíže s nekonečny“ mají i další moderní fyzikální teorie a důmyslné metody jak s nekonečny pracovat jsou podstatnou částí současné fyziky (viz renormalizace).
[editovat] Podívej se též na
[editovat] Literatura
- Vopěnka, Petr: Úhelný kámen evropské vzdělanosti a moci Práh, Praha 2000. (souhrné vydání Rozprav s geometrií, kniha se kromě jiných otázek podrobně zabývá vlivem pojmu nekonečna na antické a evropské myšlení)