Claudius Ptolemäus
aus Wikipedia, der freien Enzyklopädie
Ptolemäus (griech. Κλαύδιος Πτολεμαῖος, Klaúdios Ptolemaíos, lat. Claudius Ptolomaeus) (* um 100, vermutlich in Ptolemais Hermii, Ägypten; † um 175, vermutlich in Alexandria, Ägypten), war ein griechischer Mathematiker, Geograph, Astronom, Astrologe und Musiktheoretiker. Ptolemäus wirkte wahrscheinlich in Alexandria (Ägypten).
Ptolemäus schrieb die Mathematike Syntaxis („mathematische Zusammenstellung“), später Megiste Syntaxis („größte Zusammenstellung“), heute Almagest (abgeleitet vom Arabischen al-Majisṭī) genannte Abhandlung zur Mathematik und Astronomie in 13 Bücher. Sie war durch das Mittelalter ein Standardwerk der Astronomie und enthielt neben einem ausführlichen Sternenkatalog eine Verfeinerung des von Hipparchos von Nicäa vorgeschlagenen geozentrischen Weltbildes, das später nach ihm „Ptolemäisches Weltbild“ genannt wurde.
Damit verwarf er das von Aristarchos von Samos und Seleukos von Seleukia vertretene heliozentrische Weltbild, welches erst 1300 Jahre später durch Nikolaus Kopernikus, Johannes Kepler und Galileo Galilei durchgesetzt werden sollte.
Inhaltsverzeichnis |
[Bearbeiten] Ptolemäisches Weltbild
Nach Ptolemäus befindet sich die Erde fest im Mittelpunkt des Weltalls. Alle anderen Himmelskörper (Mond, Sonne, Planeten, Sterne) bewegen sich auf als vollkommen angesehenen Kreisbahnen um diesen Mittelpunkt. Um astronomische Beobachtungen mit diesem System in Einklang zu bringen, war es allerdings notwendig, alle Himmelskörper auf ihren Bahnen weitere Kreise um diese Bahn ziehen zu lassen (so genannte Epizykel, siehe Epizykeltheorie), und teilweise auch wieder Bahnen um diese Bahnen. Durch den Einsatz von etwa 80 solcher Bahnen konnte Ptolemäus die Beobachtungen in Einklang mit seinem Modell bringen.
Das ptolemäische Weltbild war in der Genauigkeit seiner Bahnvorhersage auch dem heliozentrischen Weltbild des Nikolaus Kopernikus überlegen, welches (fälschlicherweise) annahm, dass die Planeten die Sonne auf Kreisbahnen umliefen. Erst Keplers Entdeckung, dass die Planeten auf Ellipsen um die Sonne laufen, führte zu einem genaueren Modell und letztendlich zur Annahme eines kopernikanischen Weltbildes. Diese Berechnungsmethoden waren äußerst präzise (lange Zeit auch präziser als die Keplerschen) und in ihrer Grundidee als Berechnungsmethode auch richtig, nicht allerdings in ihrer philosophischen Deutung, dass sich alles um die Erde als Mittelpunkt dreht. Der Durchbruch und Erfolg der Keplerschen Berechnungen lag dabei weniger daran, dass die Sonne und nicht mehr die Erde im Mittelpunkt der Bewegungen stand, sondern in der Tatsache, dass Kepler Ellipsenbahnen und keine Kreisbahnen mehr verwendete, was zu einer größeren Übereinstimmung mit den real von Tycho Brahe und später Galilei gemessenen Planetendaten führte.
[Bearbeiten] Bewertungen des ptolemäischen Weltbilds
In neuerer Zeit wurden die Leistungen des Ptolemäus jedoch sehr viel kritischer bewertet. Schon Tycho Brahe sprach um 1600 von „Betrug“. 1817 warf ihm der französische Astronom und Mathematiker Jean-Baptiste Joseph Delambre gefälschte und fingierte Beobachtungen, vorgefasste Meinungen, Lügen und Plagiat vor. Dies wurde 1977 und nochmals 1985 durch den englischen Astronomen R. R. Newton in vollem Umfang wiederholt. So sollen laut Newton fast alle von Ptolemäus angeblich selbst gemachten Beobachtungen fiktiv oder von Hipparchos übernommen sein, dessen Längenangaben nur 2° 40', der Wert der aufgelaufenen Präzession, hinzugefügt wurden (korrekt wären 3° 40’ gewesen). Diesem vernichtenden Urteil über Ptolemäus hat sich B. L. van der Waerden in seinem 1988 erschienenen Buch Die Astronomie der Griechen angeschlossen.
Andererseits präsentierte bereits 1796 Pierre Simon Laplace eine simple Erklärung: die Differenz von einem Bogengrad lasse sich durch einen gleich großen Fehler in der damaligen Theorie der Sonnenbewegung begründen. Bradley E. Schaefer kam 2002 zu dem Schluss, eine beträchtliche Anzahl der von Ptolemäus genannten Beobachtungsdaten habe dieser (bzw. seine Assistenten) selbst gewonnen. Er habe jedoch dann, wenn fremde, ältere Daten besser zu seinem Modell passten als seine eigenen, diese ohne ausdrückliche Quellenangabe übernommen. Diese Vorgehensweise war zu einer Zeit, in der man an wissenschaftliche Arbeiten noch nicht die heute üblichen Maßstäbe anlegte, durchaus üblich.
[Bearbeiten] Geographie
Weiterhin verfasste Ptolemäus die Geographia (Geographike Hyphegesis, Explicatio geographica, „geografische Anleitung“), in der er die bekannte Welt und ihre Bewohner aufzeichnete. Als Referenz für die Längengrade(±180°) definierte er, den bis in das 19. Jahrhundert verwendeten Ferro-Meridian, seine Definition der Breitengrade ist bis heute gültig (Äquator 0°,Pole ±90°). Außerdem legt er darin seine Hypothese vom unbekannten Südkontinent Terra Australis dar. Ptolemäus war bekannt, dass die Erde eine Kugel ist, und benutzte für seine Karten eine Projektion der Kugelfläche in die Ebene. Allerdings nutzte er Informationen aus zweiter Hand oder Legenden, sodass seine Darstellungen, insbesondere der behandelten Völker, oft ungenau oder sogar irreführend sind. Er befasste sich auch mit den Berechnungen des Erdumfangs von Eratosthenes und Poseidonios. Dabei übernahm er die falschen Ergebnisse des Letzteren, die dann in die allgemein bekannte Literatur übergingen und später auf einen Erdumfang von ca. 17.000 Seemeilen (30.000 km) schließen ließen.
[Bearbeiten] Musiktheorie
Ptolemäus schrieb die aus drei Büchern bestehende Harmonik, das wichtigste erhaltene musiktheoretische Werk der Spätantike nach Aristoxenos und Euklid. Er versuchte – wie wahrscheinlich schon Eratosthenes – einen Kompromiss zwischen Aristoxenos und den Pythagoreern, an dem sich später auch Boethius orientierte. Rechnerisch vertrat er die Position von Euklid, ideell und terminologisch aber die auf der musikalischen Wahrnehmung aufgebaute Lehre des Aristoxenos. Er überlieferte in seiner Harmonik viele Details älterer antiker Musiktheoretiker, etwa die Tetrachorde (Tongeschlechter) von Archytas, Eratosthenes und Didymos, die ansonsten verloren wären.
[Bearbeiten] Weitere Arbeiten
Seine Optik befasst sich mit den Eigenschaften des Lichtes. Er behandelt experimentell und mathematisch unter anderem die Reflexion, Brechung und Farben. Daneben werden optische Täuschungen erwähnt. In der philosophische Abhandlung peri kriteriou kai gemonikou (lat. de iudicandi facultate et animi principatu, „Von der Wahrheit und Motiven der Menschen“) vertritt er eine Mischung aus neoplatonischen und stoischen Anschauungen.
Ptolemäus schrieb weiterhin ein vierbändiges Grundlagenwerk der Astrologie, als Tetrabiblos („vier Bücher“) bekannt und über lange Zeit die „Astrologenbibel“ schlechthin.
[Bearbeiten] Siehe auch
[Bearbeiten] Literatur
- Alfred Stückelberger, Gerd Graßhoff (Hrsg.): Klaudius Ptolemaios. Handbuch der Geographie. Schwabe Basel, Basel 2006, ISBN 3-7965-2148-7 (Griechisch-Deutsch).
- Wilfried Neumaier: Was ist ein Tonsystem? Eine historisch-systematische Theorie der abendländischen Tonsysteme, gegründet auf die antiken Theoretiker, Aristoxenos, Eukleides und Ptolemaios, dargestellt mit Mitteln der modernen Algebra. Lang, Frankfurt am Main/Bern/New York 1986, ISBN 3-8204-9492-8.
- Claudius Ptolemäus: Tetrabiblos - nach der von Melanchthon besorgten seltenen Ausgabe aus dem Jahre 1553. Chiron, Tübingen 2000, ISBN 978-3-925100-17-8.
[Bearbeiten] Weblinks
- Literatur von und über Claudius Ptolemäus im Katalog der Deutschen Nationalbibliothek
- Englische Übersetzung der Geografie des Ptolemäus (unvollständig)
- Klaudios Ptolemaios als Geograph
- Literatur zur Geographie (Geographike Hyphegesis) des Claudius Ptolemaeus
- Biographie de Ptolémée (französisch)
Commons: Klaudios Ptolemaios – Bilder, Videos und/oder Audiodateien |
Personendaten | |
---|---|
NAME | Ptolemäus |
ALTERNATIVNAMEN | Klaudios Ptolemaios, Claudius Ptolomaeus |
KURZBESCHREIBUNG | griechischer Mathematiker, Geograph und Astronom |
GEBURTSDATUM | um 100 |
GEBURTSORT | Ptolemais Hermii, Ägypten |
STERBEDATUM | um 175 |
STERBEORT | Alexandria, Ägypten |