Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Hermann Weyl - Wikipédia

Hermann Weyl

Un article de Wikipédia, l'encyclopédie libre.

Hermann Weyl (9 novembre 1885 - 8 décembre 1955) est un des mathématiciens les plus influents du vingtième siècle, l'un des premiers à combiner la relativité générale avec les lois de l'électromagnétisme. Ses recherches en mathématiques portèrent essentiellement sur la topologie et la géométrie (principalement la géométrie riemannienne). Weyl publia également de nombreux travaux sur l'espace, le temps, la matière, la philosophie, la logique, et l'histoire des mathématiques. Il effectua des recherches en mécanique quantique et en théorie des nombres.

Sommaire

[modifier] Vie

Né à Elmshorn à proximité de Hambourg en Allemagne, Weyl étudia de 1904 à 1908 à Göttingen et à Munich, principalement intéressé par les mathématiques et la physique. Son doctorat fut soutenu à Göttingen sous la direction de Hilbert et Minkowski. En 1910, il obtint un poste d'enseignant comme lecteur privé à Göttingen. Il enseigna les mathématiques à l'École polytechnique fédérale de Zurich en Suisse en 1913.

S'ouvre alors une période stable de sa vie, propice à la recherche mathématique. C'est durant cette période qu'il fit ses principales découvertes en mathématiques (lire Recherche). Épisodiquement, il fut un professeur invité à l'Université de Princeton en 1928 et 1929. Il quitta l'école polytechnique de Zurich en 1930 pour succéder à Hilbert à Göttingen où il prit la chaire de mathématiques. La montée du National Socialisme en Allemagne en 1933 obligea Weyl à accepter un poste à l'Institut des Etudes Avancées (IAS) : sa femme, Hella était juive et subissait la législation raciste du régime nazi.

C'est à Princeton qu'il travailla avec Einstein. Weyl rechercha une unification de la gravitation et de l'électromagnétisme. Cette recherche donna des explications de la violation de la non conservation de la parité, une caractéristique des interactions faibles.

Weyl continua à travailler à l'IAS jusqu'à sa retraite en 1952 ; il mourut à Zurich.

[modifier] Travaux

[modifier] Géométrie

En 1913, Weyl publie Die Idee der Riemannschen Fläche (Le concept de surface de Riemann) où il fournit un traitement unifié des surfaces de Riemann. Il fut le premier à formaliser, à cette occasion, la définition de ce qu'est une surface. Ce travail remarquable est souvent considéré comme l'une de ses principales contributions.

En 1918, il introduit la notion de jauge, première étape de ce qui deviendra la théorie de jauge. En réalité, sa vision était une tentative non réussie de modéliser les champs électromagnétique et gravitationnel comme des propriétés géométriques de l'espace-temps. Au final, le tenseur de Weyl en géométrie riemannienne a une importance considérable pour dégager les propriétés conformes.

De 1923 à 1938, Weyl étudia les groupes compacts, en termes de représentation matricielle. Il établit en particulier une formule pour les caractères d'un groupe de Lie compact. Ces travaux se révélèrent fondamentaux pour comprendre la symétrie des lois de la mécanique quantique. Il en posa les bases, donnant naissance aux spineurs, devenus familiers autour des années 30. Les groupes non compacts et leurs représentations, à l'exemple du groupe de Heisenberg, ont aussi un de ses sujets de préoccupation. Dès lors, les groupes de Lie et leurs algèbres de Lie devinrent une branche à part entière de la géométrie et de la physique théorique.

Le livre « Les groupes classiques » recouvrent les groupes symétriques, les groupes linéaires, les groupes orthogonaux et les groupes symplectiques. C'est d'ailleurs Hermann Weyl en personne qui a choisi le terme symplectique pour éviter toute confusion avec complexe.

[modifier] Fondements des mathématiques

Article détaillé : Fondements des mathématiques.

Dans le Continuum, en utilisant les travaux de Bertrand Russell, Weyl fut capable de développer l'analyse classique, sans utiliser ni la preuve par contradiction, ni les ensembles infinis de Cantor, ni l'axiome du choix. Peu après, Weyl changea de point de vue, se rattachant à l'intuitionnisme de Brouwer. Il publia un article contreversé clamant aux côtés de Brouwer « Nous sommes la révolution ». L'article en question popularisa beaucoup le point de vue intuitionniste que ne l'avaient fait les travaux originels de Brouwer.

George Polya et Hermann Weyl firent un pari au sujet de l'avenir des mathématiques lors d'une réunion mathématique à Zurich en février 1918. Pour Weyl, dans les vingt années à venir, les mathématiciens admettraient le caractère vague de notions comme le corps des nombres réels, les ensembles et la dénombrabilité, se demandant en même temps si la verité ou la fausseté de la propriété de la borne supérieure, avait le même contenu que l'interrogation sur les assertions de Georg Hegel en philosophie de la nature. L'existence de ce pari a été découverte en 1995 par Yuri Gurevich.

Quelques années plus tard, Weyl estima que l'intuitionnisme de Brouwer était un point de vue trop étroit et rejoignit, au moins partiellement, la position de Hilbert. Dans les dernières années de sa vie, il adopta le point de vue d'Ernst Cassirer ; mais il publia très peu d'articles défendant cette nouvelle position.

[modifier] Relativité

Weyl suivait de près le développement de la relativité en physique. Son approche était basée sur la philisiphie phénoménologique d'Edmund Husserl, et en particulier sur son essai de 1913, Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch: Allgemeine Einführung in die reine Phänomenologie.

[modifier] Citations

  • Les problèmes des mathématiques ne sont pas des problèmes du vide.
  • In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics.
  • My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful.

[modifier] Bibliographie

  • Symétrie et mathématique moderne, Champs, Flammarion ISBN 2080813668
  • Temps, espace, matière. Leçons sur la théorie de la relativité générale, Blanchard, 1979.
commons:Accueil

Wikimedia Commons propose des documents multimédia libres sur Hermann Weyl.


Portail de la physique – Accédez aux articles de Wikipédia concernant la physique.
Portail de la géométrie – Accédez aux articles de Wikipédia concernant la géométrie.
Portail de la logique – Accédez aux articles de Wikipédia concernant la logique.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu