Module semi-simple
Un article de Wikipédia, l'encyclopédie libre.
En mathématiques et plus particulièrement en algèbre, Un A-module où A désigne un anneau est qualifié de semi-simple ou de complètement réductible si et seulement si il est somme directe de facteurs directs, c'est à dire de sous-modules qui ne possèdent d'autres sous-modules que l'ensemble nul et le sous-module lui-même.
Les propriétés des modules semi-simples, sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des algèbres semi-simples et pour la théorie des représentations des goupes.
Sommaire |
[modifier] Définitions
Plusieurs définitions sont nécessaire à la compréhension de la notion de module et d'algèbre semi-simple. Ici A désigne dans l'article un anneau unitaire non nécessairement commutatif etM un A-module sur l'anneau A. K désigne un corps non nécessairement commutatif.
-
- M est dit simple si et seulement si il n'admet comme sous-module que l'ensemble nul ou lui-même.
K est un module simple considéré comme un espace vectoriel sur lui-même. L'anneau des entiers Z n'est pas un Z-module simple, en effet tout sous-module n.Z si n est un entier contient le sous-module 2.nZ.
-
- Soit F un sous-module de M, F est dit facteur direct si et seulement si F admet un sous-module supplémentaire.
Le corps des nombres complexes est un module en tant qu'espace vectoriel réel, R l'ensemble des nombres réels est un facteur invariant.
-
- Un module M est dit semi-simple si et seulement si tout sous-module est facteur direct.
- Un espace vectoriel E est un module semi-simple. En effet, si (ei) est une base de E, alors les espaces vectoriels engendrés par un unique élément de la base sont clairement simples, leur somme directe est égale à E.
Enfin une définition est essentielle pour établir la théorie :
-
- La longueur d'un module M, est la borne supérieure de l'ensemble des entiers n telle qu'il existe une suite strictement croissante au sens de l'inclusion de sous-A-modules de M.
La longueur d'un module correspond un peu à la dimension dans le cas des espaces vectoriels.
[modifier] Exemples
[modifier] Espace vectoriel des endomorphismes
L'exemple historique qui a amené à étudier les premières études sur ce qui est devenu plus tard la définition des modules semi-simples correspond à des modules correspondant à des idéaux de l'espace des endomorphismes. Supposons le corps K commutatif et algébriquement clos, et V un espace vectoriel de dimension finie sur K. Si L(V) désigne l'espace vectoriel des endomorphismes, alors une sous-algèbre M de L(V) est un module sur l'anneau M. Il existe un résultat important concernant ce type de module :
-
- Soit φ un endomorphisme de L(V), la sous-algèbre engendrée par φ est un module sur lui-même. Il est semi-simple si et seulement si le polynôme minimal de φ n'admet pas de racine multiple.
Ce resultat est l'application directe de la réduction de Jordan, si le polynôme minimal de φ n'a pas de racine multiple, alors l'algèbre engendré par φ est composée d'une somme directe des homothéties dans chaque sous-espace propre. Si m désigne le nombre de sous-espace propre, le module est isomorphe à Km. Dans le cas contraire, il existe une composante nilpotente qui rend un sous-espace caractéristique non semi-simple.
[modifier] Structure de G-module
Un exemple qui a largement fait évoluer la théorie est celui des G-modules ou G désigne un groupe. L'anneau associée correspond à la structure d'algèbre sur un corps K commutatif des combinaisons linéaires formelles des éléments de G :
-
- La K-algèbre du groupe G, noté K[G] est l'espace vectoriel des combinaisons linéaires formelles des éléments de G et muni de la multiplication suivante :
Soit (V, ρ) une représentation, la fonction ρ se prolonge sur K[G] de la manière suivante :
Le théorème de Maschke montre que sous G-module est un facteur direct, en conséquence un un G-module est un module semi-simple.
[modifier] Propriétés
[modifier] Propriétés élémentaires
La définition possède différentes manières de s'exprimer :
-
- Les trois propositions suivantes sont équivalentes :
- (i) M est un module semi-simple.
- (ii) M est somme de sous-modules simples.
- (iii) Tout sous-module est un facteur direct.
Démontrons ces propositions. Pour éviter l'utilisation du lemme de Zorn M est supposé de la longueur finie dans tout ce paragraphe. La proposition reste vraie sans cette hypothèse.
Un lemme est nécessaire pour établir ces équivalences :
-
- Si l'hypothèse (ii) de la proposition précédente est vérifiée, c'est à dire qu'il existe une suite (Si) pour i variant de 1 à n de sous-modules simples non nuls dont la somme est égale à M et si N est un sous-module de M, alors il existe un sous-ensemble J de [1, n] tel que N et (Sj) pour j parcourant J soit en somme directe égal à M.
En effet, on remarque tout d'abord que la chaîne Cp des sommes de Si pour i variant de 1 à p est strictement croissante, elle est donc finie. Définissons J comme le sous-ensemble maximal au sens de l'inclusion de [1, n] tel que N et (Sj) pour j parcourant J soit une somme directe. Soit P la somme directe de N et des (Sj) pour j parcourant J. L'objectif est de montrer que P est égal à M. Pour cela considérons l'intersection de P et de Si pour i élément de [1, n]. L'intersection est non nulle car sinon J ne serait pas maximal, elle contient Si car cette intersection est un sous-module et que Si est simple. P est un sous-module contenant tout les Si et donc est égal à M, ce qui termine la démonstration.
Démontrons les équivalences de la proposition :
(i) implique (ii) est immédiat.
(ii) implique (iii) est une conséquence directe du lemme.
(iii) implique (i) procédons par réccurence sur la longueur l de M. Si l est égal à 1, le module est simple donc semi-simple. Supposons la propriété vraie à l'ordre p et que l est égal à p + 1. Soit m un élément non nul de M, l'intersection A de tous les sous modules contenant m est un sous-module simple. Comme A est un facteur direct, il existe un sous-module B tel que A et B soit, en somme directe, égal à M. B est un module tel que tout sous-module est un facteur direct et sa longueur est plus petite ou égale à p. B est donc une somme directe de modules simples, l'adjonction du module simple A fournit la somme directe recherchée.
La structure d'un module semi-simple est une somme directe de sous-modules simples, on en déduit :
-
- Supposons que M ne soit pas semi-simple, alors la somme de tous les sous-modules simples de M est un sous-module semi-simple, c'est le plus grand au sens de l'inclusion.
-
- Tout sous-module d'un module semi-simple est semi-simple.
Soit S un sous-module de M. Soit P un sous-module de S, il admet un supplémentaire dans M, l'intersection de ce supplémentaire et de S est un supplémentaire de P dans S.
[modifier] Lemme de Schur
Le lemme de Schur est un lemme technique explicitant la nature des morphismes entre un module semi-simple et un module simple. Il est à la fois simple à exprimer et à démontrer, cependant ses conséquences sont aussi nombreuses que profondes. Ici M désigne un module semi-simple et S un module simple sur A.
-
- Un morphisme de A dans M est soit nul soit injectif, un morphisme de M dans A est soit nul soit surjectif, si de plus M est simple alors un morphisme est soit nul soit bijectif. Si A est commutatif et si le polynôme minimal du morphisme est scindé, les seuls morphismes de S dans S sont les homothéties.
La démonstration est immédiate, il suffit de remarquer que l'image et le noyau d'un morphisme sont des sous-modules et que les seuls sous-modules d'un module simple sont l'ensemble nul ou le module entier. Dans le cas où le polynôme minimal est scindé, le morphisme m admet une valeur propre v et si Id désigne l'identité alors m - v.Id est non injectif, c'est donc un morphisme nul.
La structure d'un morphisme de modules semi-simples est donc aisée à comprendre, il correspond à une somme directe d'automorphismes de sous-modules simples et de morphisme nul.
[modifier] Décomposition canonique
La décomposition d'un module semi-simple en sous-modules simples n'est pas unique, pour obtenir une décomposition canonique, il est nécessaire de considérer la relation d'équivalence entre les sous-modules simples donnée par les isomorphismes. Deux modules simples sont en relation si et seulement si il existe un isomorphisme de module entre eux. Il existe un nombre fini n de classes, sinon une chaîne composée d'un représentant Si dans chaque classe serait une somme directe de longueur infinie, ce qui est contraire à notre hypothèse. Soit Ni pour i variant de 1 à n la somme des modules d'une classe donnée. La décomposition suivante est canonique :
-
- Si i est un entier entre 1 et n, Ni est le plus grand sous-module ne contenant que des sous-modules simples isomorphes à Si et tous ses sous-modules sont isomorphes à Si. M est somme directe des Ni.
-
- Avec les notations précédentes les sous-modules Ni sont appelés facteurs isotypiques de M.
Si un module M ne contient que des sous-modules simples isomorphes deux à deux, alors le module M est qualifié d'isotypique.
Cette décomposition se généralise au cas ou la longueur du module n'est pas finie.
Démonstration dans le cas d'une longueur finie :
Montrons dans un premier temps par récurrence sur la longueur de Ni que ce sous-module est somme directe de sous-modules isomorphes à Si. Si la longueur est égale à un, le module est simple et la conclusion est évidente. Sinon, Si admet un supplémentaire Ti engendré par des sous-modules isomorphes à Si. Comme Ti est un module semi-simple car sous-module d'un module semi-simple est semi-simple, l'hypothèse de récurrence permet de conclure que Ti est une somme directe de sous-modules.
Montrons ensuite que tout sous-module simple P de Ni est isomorphe à Si. Soit (pj) la famille des projecteurs associés à une décomposition en somme directe de Ni en sous-modules simples isomorphes à Si. L'image de P par les pj, d'après le lemme de Schur est soit réduite à l'ensemble nul soit isomorphe à P. Comme P est non réduit à l'élément neutre, il existe au moins un projecteur ayant une image non triviale, ce qui permet de conclure.
Montrons alors que si i et j sont deux entiers compris entre 1 et n, l'intersection de Ni avec Nj est réduit à l'élément neutre. Cette intersection est un sous-module, elle est donc soit nulle soit elle contient un sous-module simple. Si elle contient un sous-module simple, il est à la fois isomorphe à Si et à Sj, ce qui est impossible, l'intersection est donc réduite à l'élément nul.
Montrons enfin que la somme des Ni est égal à M. Considérons une décomposition de M en sous-modules simples. Ils sont tous isomorphes à un élément de la famille des (Si). Soit Mi la somme directe de tout les éléments de la décomposition de M isomorphes à Si. La famille des Mi possède pour somme M, chaque Mi est inclu dans Ti, ce qui permet de conclure.
[modifier] Voire aussi
Articles de mathématiques en rapport avec l'algèbre commutative |
Algèbre | Anneau commutatif | Anneau euclidien | Anneau factoriel | Anneau noethérien | Anneau principal | Annulateur | Bimodule | Corps des fractions | Dual d'un module | Facteur direct | Idéal | Longueur d'un module | Module | Module fidèle | Module libre | Module monogène | Module quotient | Module semi-simple | Produit tensoriel | Puissance extérieure |
Modifier |
[modifier] Liens externes
- (fr) Algèbre commutative A. Chambert-Loir
- (en) Finite group representation for the pure mathematician Peter Webb
- (fr) Théorie des algèbres semi-simples P. Cartier Séminaire Sophus Lie
[modifier] Références
- Serge Lang, Algèbre [détail des éditions]
- N. Bourbaki, Algèbre commutative Chapitre VIII et IX Masson 1983