中心极限定理
维基百科,自由的百科全书
中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。
[编辑] 林德伯格-列维定理
林德伯格-列维(Lindberg-Levy)定理,即独立同分布随机变量序列的中心极限定理。它表明,独立同分布、且数学期望和方差有限的随机变量序列的标准化和以标准正态分布为极限:
设随机变量X1, X2,...,Xn独立同分布,且具有有限的数学期望和方差E(Xi) = µ,D(Xi) = σ² ≠ 0 (i=1,2,...n)。记
则
}-
其中Φ(z)是标准正态分布的分布函数。
[编辑] 棣莫佛-拉普拉斯定理
棣莫佛-拉普拉斯(de Movire - Laplace)定理,即服从二项分布的随机变量序列的中心极限定理。它指出,参数为n, p的二项分布以np为均值、np(1-p)为方差的正态分布为极限。