Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Diamant - Wikipédia

Diamant

Un article de Wikipédia, l'encyclopédie libre.

Diamant

Cristal de diamant jaune en forme d’octaèdre
Général
Formule brute C
Identification
Masse moléculaire 12,02 g/mol
Couleur Typiquement jaune, brun ou gris à incolore. Plus rarement, bleu, vert, noir, translucide, blanc, rose, violet, orange ou rouge
Système cristallin Cubique
Clivage 111 (parfait dans quatre directions)
Fracture conchoïdale
Échelle de Mohs 10
Éclat amandatin
Propriétés optiques
Indice de réfraction 2,407 à 2,451, selon la longueur d'onde de la lumière
Biréfringence non
Dispersion 2vz ~ 0,044
Polychroïsme non
Spectre d'absorption pour les diamants jaune pâle, la raie 415,5 nm est typique. Les diamants irradiés ou chauffés montrent souvent une raie vers 594 nm lorsqu'ils sont refroidis aux basses températures
Transparence transparent
Autres propriétés
Densité 3,517
Température de fusion 3546,85 °C
Solubilité insoluble dans l'eau
Caractères distinctifs
Principales variétés

Le diamant est un minéral composé de carbone cristallisé dans le système cubique. C’est le plus dur (dureté Mohs de 10) de tous les matériaux naturels.

Sommaire

[modifier] Étymologie

Le mot est dérivé du grec αδαμας (adamas : « indomptable », d'adamastos : « inflexible, inébranlable », qui a également donné adamantin et adamant, ancien nom du diamant), qui désignait initialement le métal le plus dur, puis toute matière très dure, comme la magnétite. Il a ainsi servi à désigner une grande variété de gemmes, telles que (toutes ces dénominations sont désormais interdites, sauf indication de la provenance d’un véritable diamant) :

  • le corindon synthétique : diamant d’alumine ;
  • l’hématite : diamant noir du Névada, diamant d’Alaska (hématite noire) ;
  • l’obsidienne décolorée : diamant du Névada ;
  • la pyrite : diamant alpin, diamant de Pennsylvanie ;
  • le quartz :
    • diamant de Bohème, de Briançon, de Brighton, de Bristol, de Buxton, de Hawaii ; diamant irlandais, diamant mexicain, diamant occidental ;
    • diamant Marmorosch (variété de quartz) ;
    • diamant d’Alaska, diamant du Brésil (cristal de roche) ;
    • diamant d’Alençon, diamant allemand (quartz enfumé) ;
    • diamant d’Arkansas (quartz nommé également Horatio Diamond) ;
    • diamant du Colorado (quartz fumé transparent) ;
    • diamant du Dauphiné, diamant de Rennes (quartz hyalin) ;
  • le zircon : diamant de Ceylan (incolore), diamant de Matura (zircon décoloré).

Il faut aussi noter qu’en France, l’usage commercial du terme diamant de culture (diamant synthétique) est interdit (cf. article gemme).

[modifier] Histoire

La découverte en 1793 de sa composition, du carbone pur, par Antoine Lavoisier, a marqué le début de l’épopée de sa synthèse. Cependant, il a fallu attendre le milieu du XXe siècle pour qu’enfin des chimistes réussissent à le fabriquer. Dès lors, le diamant est devenu un matériau industriel dont la production annuelle atteint aujourd’hui plus de 400 millions de carats, soit 80 tonnes.

[modifier] Propriétés

Le diamant est une forme métastable du carbone dans les conditions de température et de pression normales. Il brûle dès 500°C dans un courant d’air, mais s’il est maintenu à 1 100°C sous atmosphère neutre, il se transforme en graphite.

[modifier] Structure cristalline

Maille élémentaire d’un cristal de diamant
Maille élémentaire d’un cristal de diamant
Projection stéréographique de la figure de pôles d'un réseau cristallin de diamant selon l'axe [111] qui démontre sa symétrie au long de la diagonale d'espace du cube élémentaire.
Projection stéréographique de la figure de pôles d'un réseau cristallin de diamant selon l'axe [111] qui démontre sa symétrie au long de la diagonale d'espace du cube élémentaire.

Dans son état naturel, le diamant possède une structure cubique à faces centrées (où un site tétraédrique sur deux est occupé) et huit atomes par maille élémentaire.

Cette structure est notée A4 en |notation Strukturbericht. Son groupe d'espace est \mathrm{Fd\bar{3}m} (n°227), son symbole de Pearson est cF8. Son paramètre de maille est :

a = 3,566 7 Å

Le volume d'une maille est de 45,37 Å3, la densité théorique est de 3,517.

[modifier] Propriétés physiques

Sa masse molaire est de 12,02 g·mol-1, sa masse volumique mesurée est de 3 520 kg/m3.

Dans l’édifice cristallin du diamant, les liaisons entre atomes de carbones résultent de la mise en commun des électrons de la couche périphérique afin de former des couches saturées. Chaque atome de carbone est ainsi associé de façon tétraédrique à ses quatre voisins les plus proches (hybridation sp3 du carbone), et complète ainsi sa couche extérieure. Ces liaisons covalentes, fortes et donc difficiles à casser, couvrent tout le cristal, d’où son incroyable dureté.

La conductivité électrique est basse, car les électrons ne se regroupent pas comme dans un métal : ils restent liés aux atomes et ne peuvent pas, par exemple sous l’action d’un champ électrique extérieur, former un nuage électronique qui transporterait le courant de façon continue. En d’autres termes, le diamant est un très bon isolant. Néanmoins, il fait l’objet d’études en tant que semi-conducteur à large bande pour l’électronique de puissance.

La conductivité thermique du diamant est exceptionnelle, ce qui explique pourquoi il paraît si froid au toucher. Ce minéral est, de loin, le meilleur conducteur connu de la chaleur. Dans un cristal isolant électrique comme le diamant, la conductivité thermique est assurée par les vibrations cohérentes des atomes du réseau. Des valeurs de 2 500 W/(m·K) ont été mesurées, que l’on peut comparer aux 401 W/(m·K) du cuivre et aux 429 W/(m·K) de l’argent. Cette propriété en fait un candidat comme substrat pour le refroidissement des semi-conducteurs.

Enfin, le coefficient de dilatation du diamant, lié aux propriétés des vibrations du réseau de ce matériau, est très faible. Pour le diamant pur, l’accroissement relatif de longueur par degré est d’environ un millionième à température ambiante, que l’on peut comparer aux 1,2 millionièmes de l’invar, alliage constitué de 64 % de fer et de 36 % de nickel, qui est réputé pour sa très faible dilatation. Le fer est très loin derrière, avec 11,7 millionièmes.

[modifier] Propriétés optiques

Le diamant est transparent ou translucide ; son indice de réfraction est particulièrement élevé, et varie en fonction de la longueur d’onde : ce sont ces propriétés qui lui donne son éclat caractéristique, « adamantin ». Cet indice est de 2,407 pour la lumière rouge (687 nm), 2,418 pour la lumière jaune, et 2,451 pour la lumière bleue (431 nm).

[modifier] Gisements

Jusqu’en 1896, l’Inde et plus particulièrement la région de Golkonda (Golconde) était la seule zone de production de diamants au monde. C’est en Inde qu’ont été extraits les plus célèbres diamants (voir la section Diamants célèbres).

Depuis cette date, la plupart des diamants viennent d’Afrique (62,1 % en 1999). Cette situation a été l’origine de plusieurs guerres comme celle du Sierra Leone, où les objectifs stratégiques étaient le contrôle des principaux gisements du pays pour financer le conflit.

[modifier] Pays producteurs

Exploitation traditionnelle du diamant en Sierra Leone
Exploitation traditionnelle du diamant en Sierra Leone

Voici les principaux pays producteurs de diamants :


Production de diamants industriels naturels
Pays Millions de carats % du total
Australie 18,5 33,5
Russie 11,9 20,8
République démocratique du Congo 9,1 16,5
Botswana 7,1 12,9
Afrique du Sud 6,5 11,8
Total 5 pays 52,7 95,5
Total monde 55,2 100,0


Chiffres de 2003, source : L’état du monde 2005

[modifier] Exploitation minière

Mine de diamant d’Udachnaya (Yakoutie, Russie)
Mine de diamant d’Udachnaya (Yakoutie, Russie)

Le processus d’extraction est très diversifié, puisqu’il dépend de la région dans laquelle le diamant est exploité. Mais, en général, les opérations se divisent en trois parties :

  1. l’élimination des éléments stériles (terre et pierre qui couvre le sable diamantifère) ;
  2. l’extraction ;
  3. le lavage.

Du fait du coût de l’exploitation des mines (dix tonnes de minerai permettent d’extraire seulement un carat de diamant), seules les entreprises investissent dans ces zones qui leur garantissent une production importante : généralement, des kilomètres carrés de terrain sont excavés pour obtenir une gemme de taille appréciable, d’où le coût des diamants.

[modifier] Diamants de synthèse

Voir l’article Diamant synthétique.

Depuis que l’on sait que le diamant n’est qu’une forme particulière du carbone, les physiciens et chimistes ont essayé de le synthétiser. La première synthèse artificielle du diamant eut lieu en 1953 à Stockholm par l’inventeur Baltzar von Platen et le jeune ingénieur civil Anders Kämpe travaillant dans la compagnie suédoise ASEA.

En soumettant le carbone à une forte pression et à une haute température pendant plusieurs heures, il est possible de réaliser un diamant de synthèse. Mais en raison de leur petite taille, ces derniers ne sont utilisés que dans l’industrie.

[modifier] Utilisation

[modifier] Industrie

Tout d’abord, l’industrie utilise beaucoup le diamant en raison de sa dureté. Depuis les enclumes à diamant permettant de recréer des pressions titanesques, aux outils de coupe et d’usinage fondés sur les propriétés mécaniques du diamant, les applications en sont multiples. Cette dureté intervient aussi dans la précision que l’on peut atteindre avec des outils en diamant. Notamment, les scalpels en diamant, permettent de créer des incisions ultraprécises (en ophtalmologie par exemple), car le moindre effleurement découpe la peau. De surcroît, le diamant étant constitué de carbone, il est biocompatible et ne génère pas de rejet ou de toxicité.

La chimie s’intéresse aussi fortement au diamant : il possède des propriétés qui le rendent tout à fait approprié pour des applications en électrochimie. D’une part, il est résistant aux acides et aux bases, ce qui permet une utilisation dans des milieux corrosifs. D’autre part, les électrodes de diamant plongées dans de l’eau pure ne subissent aucune réaction électrochimique ; elles sont donc très efficaces.

De nombreux dispositifs optiques utilisent la transparence du diamant, tandis que les dispositifs électroniques exploitent notamment ses propriétés thermiques.

En raison de sa faible conductivité électrique, le diamant peut être utilisé dans l’industrie des semi-conducteurs lorsqu’il est dopé avec des impuretés de bore ou de phosphore.

Les diamants sont actuellement à l’étude pour une utilisation comme détecteurs :

  • de rayonnements dans des installations de recherche scientifique. Le CERN devait recevoir plusieurs mètres carrés de détecteurs en diamants synthétiques. La technologie n’ayant pas avancé assez vite, ils seront en silicium ;
  • de rayonnements dans les installations de radiothérapie. Le carbone du diamant est le même que celui du corps (carbone 12 normal) et permet donc des mesures de dose plus proche de la dose réellement reçue par les tissus ;
  • de produits divers, par les méthodes de type SAW (Surface Acoustic Waves), car le diamant est un très bon transducteur, grâce à sa rigidité. Il est cependant nécessaire de déposer (par des méthodes de CVD-Magnétron, notamment) un film mince de nitrure d'aluminium, qui est un piézoélectrique, au contraire du diamant. La forme du dépôt influe sur les produits détectables.

En revanche, et malgré leur stabilité considérable, les diamants ne peuvent pas servir dans un cœur de centrale nucléaire, car le bombardement est bien trop important et le matériau serait détruit.

La production de diamant naturel est principalement destinée à l’industrie.

[modifier] Joaillerie

Bague en diamant (solitaire)
Bague en diamant (solitaire)

Les qualités de certains diamants (comme leur pureté, leur taille importante et leur couleur) font du diamant, la plus célèbre des pierres précieuses en joaillerie.

La beauté de son brillant est due au fait qu’il possède un haut indice de réfraction de la lumière et un grand pouvoir dispersif : en pénétrant, les rayons de lumière sont réfléchis à l’intérieur de la pierre à l’infini et la lumière blanche se disperse, retourne à l’intérieur transformée en un éventail de couleurs. Les diamants (comme les gouttes d’eau) fonctionnent comme des prismes en freinant, plus ou moins en fonction des longueurs d'onde (violette au maximum, rouge au minimum) de façon que les couleurs soient dispersées sous forme d’arc-en-ciel.

Mais tous les diamants ne sont pas utilisés en bijouterie. Tout défaut peut leur ôter de la valeur et ils sont alors employés pour des applications industrielles. Généralement ceci arrive avec ceux qui présentent des bulles internes ou des particules étrangères, ou s’ils sont de forme irrégulière ou pauvrement colorés.

[modifier] Taille

Diamants taillés
Diamants taillés

La taille des diamants s'effectue surtout à Anvers (Belgique), à Tel-Aviv (Israël) et au Gujarat (Inde) par la communauté jaïn. En Thaïlande, ce sont les pierres précieuses (rubis et saphirs) qui sont taillées.

Le degré de la beauté de l’arc-en-ciel du diamant dépend, en grande partie, de la sculpture et du poli de la pierre. Bien que naturellement les diamants aient leurs éclats propres, ceux-ci peuvent être améliorés et multipliés par la taille experte d’un lapidaire.

Du fait de son extrême dureté, le diamant ne peut être usiné que par un autre diamant, c’est pourquoi la sculpture et le poli de la pierre en sont les éléments les plus importants.

Avant de le tailler, on examine la gemme pour déterminer ses plans de clivage. On trace ensuite sur elle une ligne qui marque le périmètre de ces plans. Sur celui-ci, on fait une petite cannelure avec une espèce de bois qui porte dans son extrémité un diamant. Par cette ouverture, on introduit une fine lame d’acier, on donne un coup sec et la pierre se divise en deux.

Il existe de nombreuses façons de tailler le diamant, mais la plus connue, celle qui met le mieux en valeur la beauté du diamant et qui est de ce fait la plus utilisée, est certainement la taille « brillant ». Cette technique perfectionnée permet de transformer les pierres brutes en véritables joyaux de lumière, en faisant apparaître 58 facettes (57 si l'on ne tient pas compte de la collette) : 33 sur la couronne et 24 sur la culasse, régulières et de tailles définies précisément, à la surface du diamant.

En effet, si les notions de pureté et de couleur paraissent familières, les proportions de taille le sont plus rarement. Pourtant, ces dernières sont un facteur de qualité essentiel. Elles conditionnent directement le rendu de brillance et le « feu » du dia­mant. À couleur identique, un dia­mant possédant de bonnes proportions sera bien plus éclatant qu’un diamant pur incorrectement taillé.

Depuis l’apparition de la taille Tolkovskyen (1919), les diamantaires n’ont cessé de chercher à optimiser le rendu de brillance du diamant. De toutes les tailles du diamant, c’est certainement la forme ronde brillant qui a été la plus étudiée et qui est la plus aboutie ; aujourd’hui, les proportions appliquées à cette taille résultent directement de la compréhension des lois optiques du matériau et de la maîtrise de la tech­nique de taille et du polissage.

Au Japon est très apprécié la taille flèche et cœurs, nommée ainsi à cause des formes des jeux de lumière.

[modifier] Couleur

Les diamants sont aussi classés par couleur. La couleur la plus commune étant « le blanc » (ici, le blanc désigne plutôt l'absence de couleur : c'est à dire que la diamant est transparent). Ces couleurs sont notées grâce à un code utilisant les différentes lettres de l'alphabet :

Code Couleur
D Blanc exceptionnel +
E Blanc exceptionnel
F Blanc extra +
G Blanc extra
H Blanc
I et J Blanc nuancé
K et L Légèrement teinté
M à Z Couleur teinté

[modifier] Pureté

Les diamants contiennent aussi une grande variété d'inclusions qui peuvent modifier son apparence. Ceux-ci sont indiqués en utilisant les codes suivants :

Code Signification
IF (Internally Flawless) Absence d'inclusions avec un grossissement de 10 fois
VVS1-VVS2 (Very Very Small inclusions) Minuscule(s) inclusion(s) très difficilement visible(s) à la loupe avec un grossissement de 10 fois
VS1-VS2 (Very Small inclusions) Très petite(s) inclusion(s) difficilement visible(s) à la loupe avec un grossissement de 10 fois
SI1-SI2-SI3 (Small Inclusions) Petite(s) inclusion(s) facilement visible(s) à la loupe avec un grossissement de 10 fois
I1-I2-I3 (Imperfect) Grande(s) et/ou nombreuses inclusion(s) visible(s) à l'œil nu

[modifier] Diamantaires et gemmologues

Ce classement en catégories du diamant (les 4C)[réf. nécessaire] est réalisé par des professionnels. On appelle les personnes chargées de ce travail les gemmologues. Il existe peu de laboratoires mondiaux de gemmologie, les plus connus sont :

  • Gemological Institute of America (GIA) à New York
  • Diamond High Council (HRD) à Anvers
  • International Gemological Institute (IGI) à Anvers
  • American Gem Society (AGS) à New York

Chaque diamant ainsi étudié et classé reçoit un certificat d'authenticité. Il s'agit d'un carte d'identité du diamant pour tous les échanges mondiaux qui suivront.

Le diamantaire a contrario du gemmologue n'étudie pas la pierre précieuse mais la négocie et réalise le cas échéant une monture pour la mettre en valeur. Il ne travaille que des pierres taillées mais pas de pierres brutes.

[modifier] Diamants célèbres

Liste de quelques diamants célèbres :

Couleur Pierre brute Pierre taillée
Nom Carats Lieu de découverte Année Nom Carats
incolore Cullinan 3106 Afrique du Sud
(mine Premier)
1905 Grande Étoile d’Afrique
(Cullinan I)
530,20
Petite Étoile d’Afrique
(Cullinan II)
317,40
  787,50 Inde XVIIe siècle Orloff 194,75
  410 Inde 1698 Régent 140,50
        Koh-i Nor 108,93
Excelsior 995,2 Afrique du Sud
(Jagersfontein)
1893 Excelsior I 69,68
        Sancy 55,23
rose         Darya-i-Nur 175
        Hortensia 20
vert   119,50 Inde 1743 Dresde vert 40,70
bleu         Hope 44,50
noir         Orloff noir 67,50
        Tablet of Islam 160,18
jaune-marron   755 Afrique du Sud 1985 Golden Jubilee
(couronne impériale de Thaïlande)
545.67

[modifier] Symbolique

[modifier] Voir aussi

[modifier] Liens externes

commons:Accueil

Wikimedia Commons propose des documents multimédia libres sur Diamant.

wikt:

Le Wiktionnaire possède une entrée pour « diamant ».

Portail de la chimie – Accédez aux articles de Wikipédia concernant la chimie.

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu