New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
מרחב מחויג - ויקיפדיה

מרחב מחויג

מתוך ויקיפדיה, האנציקלופדיה החופשית

במתמטיקה, מרחב מחויג (Ringed Space) הוא, מבחינה אינטואיטיבית, מרחב ביחד עם אוסף של חוגים קומוטטיבים, אשר איבריהם מהווים "פונקציות" על הקבוצות הפתוחות של המרחב. מרחבים מחויגים מופיעים רבות באנליזה, ובגאומטריה אלגברית, שם הם משמשים להגדרה של סכמות.

תוכן עניינים

[עריכה] הגדרה פורמלית

מרחב מחויג הוא מרחב טופולוגי X ביחד עם אלומה של חוגים קומוטטיביים \mathcal{O}_X על X. האלומה \mathcal{O}_X נקראת אלומת המבנה של X.

מרחב מחויג מקומית (locally ringed space) הוא מרחב מחויג (X,\mathcal{O}_X) כך שלכל x \in X, הנבט \mathcal{O}_{X,x} הוא חוג מקומי. במילים אחרות, החוג \mathcal{O}_{X,x} מכיל אידאל מקסימלי יחיד.

[עריכה] דוגמאות

  • יהי X מרחב טופולוגי, ותהי \mathcal{O}_X אלומת הפונקציות הממשיות הרציפות על X. במילים אחרות, לכל קבוצה פתוחה U \subseteq X, החוג \mathcal{O}_X(U) מכיל את כל הפונקציות הרציפות f:U \rightarrow \mathbb{R}. נשים לב שאם f \in \mathcal{O}_{X,x} היא פונקציה רציפה המקיימת f(x) \ne 0, אז יש סביבה של x בה f אינה מתאפסת, ולפיכך f הפיכה בחוג \mathcal{O}_{X,x}. מכיוון שהקבוצה \{f \in \mathcal{O}_{X,x}:f(x) =0 \} מהווה אידאל של חוג זה, הרי שזהו אידאל מקסימלי יחיד, ולפיכך \mathcal{O}_{X,x} הוא חוג מקומי. לפיכך (X,\mathcal{O}_{X}) הוא מרחב מחויג מקומית.
  • באופן דומה, אם X יריעה חלקה, ו\mathcal{O}_X היא האלומה המתאימה לכל קבוצה פתוחה U \subseteq X את חוג הפונקציות החלקות על U, אז (X,\mathcal{O}_X) הוא מרחב מחויג, כאשר טיעון דומה יראה שכמו בדוגמה הקודמת, זהו למעשה מרחב מחויג מקומית.

[עריכה] מורפיזמים

בהינתן שני מרחבים מחויגים (X,\mathcal{O}_X) ו-(Y,\mathcal{O}_Y), מורפיזם של מרחבים מחויגים נתון על ידי המידע הבא:

  • פונקציה רציפה f:X \rightarrow Y
  • בהינתן קבוצה פתוחה V \subseteq Y, הומומורפיזם של חוגים \phi_Y:\mathcal{O}_Y(V) \rightarrow \mathcal{O}_X(f^{-1}(V)), כך שהומומורפיזמים אלו מתחלפים עם פונקציות הצמצום. במילים אחרות, אם V_1 \subseteq V_2 \subseteq Y הן קבוצות פתוחות, אז הדיאגרמה הבאה (הפונקציות האנכיות הן הומומורפיזמי הצמצום של האלומות) קומוטטיבית:

על מנת שמורפיזם של מרחבים מחויגים יהיה מורפיזם של מרחבים מחויגים מקומית, נדרוש בנוסף שההומורפיזם \phi_f(x):\mathcal{O}_{Y,f(x)} \rightarrow \mathcal{O}_{X,x} המושרה על הנבטים על ידי φ יהיה הומומורפיזם מקומי, כלומר שהאידאל המקסימלי (היחיד) של החוג \mathcal{O}_{Y,f(x)} יועתק לאידאל המקסימלי (היחיד) של \mathcal{O}_{X,x}.

[עריכה] המרחב המשיק

מרחבים מחויגים מקומית מכילים מספיק מבנה על מנת שניתן יהיה להגדיר את המרחב המשיק בכל נקודה במרחב. נניח כי (X,\mathcal{O}_X) הוא מרחב מחויג מקומית, ותהי x \in X. נרצה להגדיר את המרחב המשיק Tx בנקודה x. יהי Rx הנבט של אלומת המבנה של X, ויהי mx האידאל המקסימלי (היחיד) בחוג זה. אז חוג המנה kx = Rx / mx הוא שדה, וחוג המנה m_x / {m_x}^2 הוא מרחב וקטורי מעל kx. המרחב הדואלי (m_x / {m_x}^2)^* יקרא המרחב המשיק בנקודה x.

רעיון הבניה הוא שאיברי המרחב המשיק אמורים להכיל מידע לגבי האופן בו "גוזרים" פונקציות המוגדרת בנקודה x, כלומר איברים של Rx. לשם כך מספיק לדעת כיצד גוזרים פונקציות שערכן ב x הוא אפס (משום שכל פונקציה אחרת שונה מפונקציה כזאת בקבוע, והנגזרת של פונקציה קבועה היא אפס). לפיכך, נתבונן באיברי mx (שברוב המקרים הצצים בגאומטריה הם בדיוק אוסף של פונקציות המתאפסת ב x). מכלל לייבניץ (נגזרת של מכפלה) ידוע כי הנגזרת של מכפלה של שתי פונקציות המתאפסות בx שווה ל0, ולפיכך מחלקים את האידאל mx בריבועו {m_x}^2. לבסוף, מכיוון שנגזרת היא פונקציונל לינארי, הרי שנעבור למרחב הדואלי, ובכך נקבל את "מרחב כל הגזירות" של פונקציות בנקודה x, הוא המרחב המשיק בנקודה x.

[עריכה] לקריאה נוספת

שפות אחרות

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu