Piezoelettricità
Da Wikipedia, l'enciclopedia libera.
La piezoelettricità (la parola deriva dal greco piezein, pressione, compressione) è la proprietà di alcuni cristalli di generare una differenza di potenziale quando sono soggetti ad una deformazione meccanica. Tale effetto è reversibile e si verifica su scale dell'ordine dei nanometri.
Il funzionamento di un cristallo piezoelettrico è abbastanza semplice: quando viene applicata una pressione (o decompressione) esterna, si posizionano, sulle facce opposte, cariche di segno opposto. Il cristallo, così, si comporta come un condensatore al quale è stata applicata una differenza di potenziale. Viene quindi generata una corrente elettrica, detta corrente piezoelettrica, tra le facce opposte del cristallo. Al contrario, quando si applica una differenza di potenziale al cristallo, esso si espande o si contrae.
Dal punto di vista della struttura cristallina, i materiali piezoelettrici hanno normalmente varie configurazioni geometriche equivalenti dal punto di vista dell'energia, cioè della stabilità del sistema, ma orientate diversamente. Ad esempio il titanato di bario (BaTiO3) ha una cella di forma romboidale che può allungarsi lungo uno qualsiasi dei tre assi principali. Per fargli acquisire proprietà piezoelettriche il materiale viene riscaldato e immerso in un campo elettrico in modo da farlo polarizzare e raffreddare. Alla fine del processo il materiale ha tutte le celle deformate nella stessa direzione; è importante notare che solo lungo questa direzione si hanno proprietà piezoelettriche.
[modifica] Applicazioni industriali e scientifiche
La caratteristica di produrre una differenza di potenziale in seguito alla compressione ha diverse applicazioni industriali. La più comune riguarda i normali accendigas da cucina, dove un cristallo sottoposto manualmente a pressione tramite un tasto fa scoccare una scintilla senza bisogno di pile di alimentazione. In campo musicale, si utilizzano i cosiddetti pick up piezoelettrici, dispositivi in grado di rilevare le variazioni di pressione esercitate da una corda in vibrazione di uno strumento musicale generando un segnale elettrico che poi viene amplificato. Materiali con proprietà piezoelettriche vengono inoltre utilizzati in alcuni rivelatori di pressione e per realizzare oscillatori elettronici. Tuttavia la relazione tra compressione e tensione è generalmente molto variabile e richiede una taratura per ogni dispositivo.
L'effetto inverso, di generare piccoli movimenti a partire da differenze di potenziale, si usa nella focalizzazione degli strumenti ottici e come propulsore in alcune stampanti a getto di inchiostro. L'utilizzo di materiali piezoelettrici ha reso possibile anche il moderno microscopio a scansione a effetto tunnel e il microscopio a forza atomica. Questo effetto viene inoltre utilizzato per azionare il moto degli utensili nelle lavorazioni meccaniche ad ultrasuoni e recentemente negli iniettori diretti.
[modifica] Collegamenti esterni
Progetto Ingegneria - Bar degli ingegneri - L'ingegnere - I materiali - Le unità di misura | ||
Settore Ingegneria Civile e Ambientale Ambiente e territorio - Civile - Geotecnica - Idraulica - Naturalistica - Sicurezza - Sismica - Strutturale - Trasporti |
Settore Ingegneria Informazione Acustica - Biomedica - Elettronica - Informatica - Telecomunicazioni |
Settore Ingegneria Industriale Aerospaziale - Automazione - Biochimica - Chimica - Elettrica - Energetica - Gestionale - Industriale - Materiali - Meccanica - Navale - Nucleare - Processi di produzione |
Categorie ingegneristiche Aerospaziale - Automazione - Biomedica - Chimica - Civile - Comunicazioni - Elettrica - Geotecnica - Gestionale - Idraulica - Industriale - Informatica - Materiali - Meccanica - Navale - Nucleare - Sismica - Strumentale - Strutturale - Termotecnica - Territorio - Trasporti |