New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
André Weil - Wikipedia

André Weil

aus Wikipedia, der freien Enzyklopädie

André Weil (* 6. Mai 1906 in Paris; † 6. August 1998 in Princeton) war ein französischer Mathematiker.

Inhaltsverzeichnis

[Bearbeiten] Leben

André Weil wuchs als Sohn eines jüdischen Arztes (und Bruder von Simone Weil) in Paris und, während des ersten Weltkrieges, Südfrankreich auf. Die Familie hatte Ursprünge im Elsass (er ist auch entfernt mit Albert Schweitzer verwandt), floh von dort aber nach der Annexion durch das deutsche Kaiserreich 1871. Schon mit sechzehn Jahren (und, wie berichtet wird, noch in kurzen Hosen) immatrikulierte er sich an der École Normale Supérieure. Nach Auslandsaufenthalten in Rom und Göttingen wurde er 1928 mit 22 Jahren promoviert. 1930-1932 war er in Indien (Aligarh Muslim University), danach in Marseille und für 6 Jahre in Strassburg.

Zusammen mit einigen ehemaligen Kommilitonen begründete er Anfang der dreißiger Jahren, damals war er Professor in Straßburg, den Bourbaki Kreis (die Benennung der Gruppe nach dem obskuren General der 1870er Kriege stammt angeblich von ihm). 1937 heiratete er seine Frau Eveline.

Im Krieg floh Weil in die USA, wo er von Guggenheim und Rockefeller Stipendien lebte. Nach einer nach seinem Gefühl sehr frustierenden Lehrtätigkeit an Pennsylvanischen Ingenieurschulen und einem Intermezzo in Saõ Paulo 1945-1947 (wo er allerdings Oscar Zariski traf) wurde er 1947 erst nach Chicago, dann 1958 an das Institute for Advanced Study in Princeton berufen, wo er 1976 emeritiert wurde, aber weiterhin tätig blieb.

Angesichts seiner streitbaren Natur ist es sehr wahrscheinlich, dass er einer der Mathematiker ist, von deren Intrigen gegen die Institutsleitung Ed Regis in seinem Buch "Who got Einsteins office" über das "Institute for Advanced Studies" berichtet: der designierte heftig attackierte Chef - ein anerkannter Wirtschaftswissenschaftler, von dem die Mathematiker allerdings verächtlich behaupteten, er hätte über eine "Schuhfabrik" promoviert - vermutete denn auch, dass Mathematiker deswegen zu Intrigen neigen, da sie sich nach einigen Stunden intensiver Arbeit am Morgen für den Rest des Tages nach anderem Zeitvertreib umsehen müssten.

[Bearbeiten] Werk

André Weil war einer der überragenden Mathematiker des zwanzigsten Jahrhunderts. Der Schwerpunkt seiner Tätigkeit lag auf den Gebieten der algebraischen Geometrie und Zahlentheorie, zwischen denen er überraschende Verbindungen fand.

In seiner Dissertation 1928 bewies er das Mordell-Weil-Theorem. Es besagt, dass die Gruppe der rationalen Punkte auf einer abelschen Varietät (was so viel heisst wie durch algebraische Gleichungen definiert und mit einer Gruppenstruktur versehen) endlich erzeugt ist. Den Spezialfall der elliptischen Kurven hatte schon Louis Mordell bewiesen. Die Gruppenstruktur in diesem Spezialfall geht noch auf Henri Poincare und seine Tangentenkonstruktion rationaler Punkte auf elliptischen Kurven zurück. Weil übertrug dabei die Idee von Fermats "unendlichem Abstieg" Beweis in der Theorie diophantischer Gleichungen mit Hilfe der Einführung von "height functions" ("Höhenfunktionen"), die es erlaubten, die "Größe" rationaler Punkte auf algebraischen Kurven zu messen.

Ein weiteres Ziel von Weil in den 1930er Jahren war der Beweis der Riemann Vermutung für Zetafunktionen auf abelschen Varietäten. Den Spezialfall der elliptischen Kurven hatte schon Helmut Hasse erledigt. Weil gelang dieser Beweis 1940, während er in Frankreich wegen Desertion in Rouen im Gefängnis sass und auf seinen Prozess wartete (er meldete sich dann doch noch freiwillig, wurde entlassen und floh mit seiner Frau 1941 in die USA). Den Rest der 1940er Jahre verbrachte er damit, die algebraische Geometrie auf eine strenge algebraische Basis zu stellen, um seine Beweise abzusichern (Bücher "Foundations of algebraic geometry" 1946 u.a.).

1945 fand er dabei einen tiefliegenden Zusammenhang zwischen der Zetafunktion einer algebraischen Mannigfaltigkeiten über endlichen Körpern und der Topologie (Betti-Zahlen u.a) dieser algebraischen Mannigfaltigkeit. Den Begriff Zetafunktion einer algebraischen Varietät hat man sich dabei eher als eine Art Abzählfunktion für die Anzahl der in dem Körper liegenden Punkte dieser Kurve vorzustellen. Er formulierte dies in seinen berühmten "Weil-Vermutungen". Sie besagen u.a., dass die Zetafunktion eine rationale Funktion ist (Quotient von Polynomen), dass die Grade der Polynome gleich den Bettizahlen der zugrundeliegenden Mannigfaltigkeit sind, die Zetafunktion einer Funktionalgleichung genügt und dass die Nullstellen den Realteil 1/2 hätten ("Riemann-Vermutung"). Die Rationalität wurde von Dwork noch mit "elementaren" p-adischen Methoden bewiesen. Für die letzte, die "Riemann-Vermutung", benötigte Pierre Deligne 1974 das gesamte riesige Gebäude der Algebraischen Geometrie, den die Grothendieck Schule inzwischen errichtet hatte. Den Spezialfall der Kurven hatte Weil selbst bewiesen. Die Anregung für die ganze Theorie fand Weil nach eigenen Worten im Studium von Arbeiten von Gauss (Gauss-Summen). Weil geht darauf in "La cyclotomie jadis et naguerre" (Die Kreisteilung einst und jetzt) ein, der Zusammenhang ist aber auch in Ireland, Rosen "A classical invitation to number theory" dargestellt.

Eine weitere nach ihm benannte Vermutung ist die Taniyama-Shimura-Weil-Vermutung. Sie besagt, dass elliptische Kurven über den rationalen Zahlen durch Modulfunktionen parametrisiert werden und wurde 1993 von Andrew Wiles im Zuge seines Beweises der Fermat-Vermutung bewiesen. Auf Druck des nicht minder streitbaren Serge Lang wurde das "Weil" in der Vermutung zunehmend relativiert. Weil selbst hatte die Vermutung zwar nicht zuerst aufgestellt, aber im Laufe der 1960er Jahre viel Arbeit zu ihrer Unterstützung geleistet.

In seinem Buch "Basic number theory" von 1967 ging er einen originären eigenen Zugang unter Verwendung von Claude Chevalleys "Ideles" und den von ihm daraus entwickelten "Adeles", der Integration über topologischen Gruppen und der in der Form der "central simple algebras" gefassten Gruppenkohomologie.

Er führte auch die harmonische Analyse auf topologischen Gruppen ein (gleichnamiges Buch 1940) und schrieb 1958 ein Buch über Kählermannigfaltigkeiten. Die Weil-Darstellungen sind von Bedeutung in mathematischen Formulierungen zur Quantenmechanik und wurden von Weil als darstellungstheoretische Interpretation der Theorie der Thetafunktion eingeführt (in Bezug auf symplektische Gruppen).

Dank seiner klassischen Vorbildung (er war ein passionierter Sammler antiquarischer Bücher und flüssig in den antiken Sprachen, ja er studierte sogar Sanskrit in Paris) war er auch an der Geschichte der Mathematik, insbesondere an Pierre de Fermat interessiert. Eine Anzahl von Büchern und Aufsätzen (sowie von bissigen Kritiken) zeugen davon. Er gab auch die Werke von Ernst Eduard Kummer heraus.

[Bearbeiten] Werke

  • Oeuvres Scientifiques- Collected papers, 3 Bde. 1979 (mit seinem Kommentar)
  • Lehr- und Wanderjahre eines Mathematikers, Birkhäuser 1993 (Original Souvenir d'apprentissage, Birkhäuser Verlag, Basel, 1991, 201 pp, ISBN: 3-7643-2500-3) (Autobiographie, aber sehr selektiv)
  • Number of solution of equations over finite fields, Bulletin American Mathematical Society, Bd.55, 1949, S.497-508
  • Basic number theory, Springer Verlag 1967, 1995
  • Elliptic functions according to Kronecker and Eisenstein 1976
  • Zahlentheorie - ein Gang durch die Geschichte von Hammurabi zu Legendre, Birkhäuser 1992 (zuerst engl. 1984)
  • Two lectures on number theory - past and present, L Enseignement Mathematique 1974
  • La cyclotomie jadis et naguerre, Seminar Bourbaki 1974
  • Dirichlet series and automorphic forms, Springer 1971
  • Courbes algebriques et varietes abeliennes, Hermann 1971

[Bearbeiten] Literatur

  • Freitag, Kiehl Etale cohomology and the Weil conjecture, Springer Verlag 1988 (in Anhang Jean Dieudonne zu Geschichte)
  • Osmo Pekonen: L'affaire Weil à Helsinki en 1939, Gazette des mathématiciens 52 (avril 1992), pp. 13—20. Mit einem Nachwort von André Weil (Weil schrieb in seiner Autobiographie, dass er dort als Spion verhaftet wurde, ihm die Erschiessung drohte und er erst auf Fürsprache von Rolf Nevanlinna wieder freikam - die Fakten sind nach Pekonen viel weniger dramatisch).

[Bearbeiten] Weblinks


Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu