Código binario
Na Galipedia, a wikipedia en galego.
O código binario ou sistema binario é un sistema de numeración en que todas as cantidades se representan utilizando como base o número dous, co que se dispón de dúas cifras: cero e mais un (0 e 1).
Os computadores dixitais traballan internamente con dous niveis de voltaxe/carga, polo que o seu sistema de numeración natural é o sistema binario (aceso/ apagado). Con efeito, nun sistema simple como este é posible simplificar o cálculo, co auxilio da lóxica booleana. En computación, chámaselle bit a un díxito binario (0 ou 1).
Ademais, este sistema de numeración permite a transmisión de datos cun risco nulo de interferencias, o que permitirá outras aplicacións como o futuro pero próximo internet por enchufe.
Índice |
[editar] Operacións con binarios
[editar] Conversión binario a decimal
Dado un número N, binario, unha forma de convertelo en decimal é escreber cada número que o compón (bit), multiplicado pola base do sistema (base = 2), elevado á posición que ocupa. Exemplo:
1001(binario)
1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = 9
Polo tanto, 1001 é 9 en decimal s
[editar] Decimais a binarios
Dado un número decimal, para convertelo en binario, basta dividilo sucesivamente por 2, anotando o resto da división enteira:
12(decimal)
12 / 2 = 6 + 0
6 / 2 = 3 + 0
3 / 2 = 1 + 1
1 / 2 = 0 + 1
Observe que é só ler os números de baixo para riba, ou sexa 1100 é 12 en binario
[editar] Suma de números binarios
Recordando as seguintes sumas básicas:
- 0+0=0
- 0+1=1
- 1+1=10
Así, ao se somar 100110101 con 11010101, tense:
100110101 + 11010101 ----------- 1000001010
Operase como en decimal: comezase a sumar desde a esquerda, no exemplo, 1+1=10, entón escrebese 0 e "levase" 1. Somase este 1 á columna seguinte: 1+0+0=1, e seguese ata terminar todas as columnas (exactamente como en decimal).
[editar] Resta de números binarios
No sistema numeral orixinal, faise exactamente igual que en decimal:
100110101 - 11010101 ----------- 1100000
Nas computadores, faise un método especial de suma por complemento a dous.
[editar] Produto de números binarios
O produto de números binarios é especialmente simple, xa que o 0 multiplicado por calquer cousa resulta 0, e o 1 é o elemento neutro do produto.
Por exemplo, a multiplicación de 10110 por 1001:
10110 × 1001 --------- 10110 00000 00000 10110 --------- 11000110
[editar] División de números binarios
Esta é unnha operación un tanto complexa en binario, cuio desenvolvemento non imos tratar.
[editar] Vexase tamén
- Sistema decimal
- Sistema hexadecimal
Sistemas de numeración |
Código binario | Código octal | Código decimal | Código hexadecimal |