חיתוך (מתמטיקה)
מתוך ויקיפדיה, האנציקלופדיה החופשית
בתורת הקבוצות ובענפים אחרים במתמטיקה, החיתוך של שתי קבוצות ו- הוא הקבוצה המכילה את כל האיברים ב- ששייכים גם ל- (או באופן שקול, כל האיברים ב- ששייכים גם ל-), ורק אותם. החיתוך של של ו- נכתב בדרך כלל כך: .
מבחינה פורמלית:
באופן דומה ניתן להגדיר חיתוך עבור משפחה כלשהי, גם אינסופית, של קבוצות. נניח כי היא משפחה של קבוצות (כלומר, קבוצה של קבוצות שכל אחת מזוהה על ידי אינדקס השייך לקבוצת אינדקסים ), אז החיתוך שלהן יסומן ומתקיים אם ורק אם לכל מתקיים- .
[עריכה] דוגמאות
- אם אז
- אם (B הוא קבוצה חלקית של A) אז .
- אם (קבוצה ריקה) אז לכל מתקיים . (זהו מקרה פרטי של המקרה הקודם).
- אם אז .
- בדוגמאות הבאות נשתמש גם בפעולת האיחוד:
- בהינתן סדרה בת מניה של קבוצות , אז הקבוצה היא קבוצת כל האיברים שמופיעים בכל הקבוצות החל מאינדקס כלשהו.
- בהינתן סדרה בת מניה של קבוצות , אז הקבוצה היא קבוצת כל האיברים שמופיעים במספר אינסופי של קבוצות.
-
- (שתי הקבוצות הללו מכונות בהתאמה הגבול התחתון והגבול העליון של סדרת הקבוצות )
נושאים בתורת הקבוצות |
---|
תורת הקבוצות הנאיבית | תורת הקבוצות האקסיומטית | קבוצה | הקבוצה הריקה | איחוד | חיתוך | משלים | הפרש סימטרי | קבוצת החזקה | מכפלה קרטזית | יחס | יחס שקילות | פונקציה | עוצמה | קבוצה בת מנייה | האלכסון של קנטור | משפט קנטור-שרדר-ברנשטיין | השערת הרצף | הפרדוקס של ראסל | סדר חלקי | מספר סודר | הלמה של צורן | אקסיומת הבחירה |