Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions מידת לבג - ויקיפדיה

מידת לבג

מתוך ויקיפדיה, האנציקלופדיה החופשית

מידת לבג היא פונקציית מידה על שדה המספרים הממשיים שמהווה הכללה של מושג האורך (אפשר להכליל מידת לבג של נפח על המרחב \mathbb{R}^n ). באמצעות מידת לבג אפשר להרחיב מושגים מהאנליזה הממשית, הבולט שבהם הוא האינטגרל.

הערה: כדי להבין מאמר זה יש להכיר את מושג המידה, עליו אפשר לקרוא במאמר מידה (מתמטיקה).

תוכן עניינים

[עריכה] תכונות מידת לבג וניסוח פורמלי של מהותה

מידת לבג (Lebesgue) היא פונקציית מידה המוגדרת על אוסף הקבוצות המדידות בישר הממשי ומחזירה לכל קטע את האורך שלו. מידת לבג מסומנת באות m.

תכונות של מידת לבג:

  • מידת לבג היא א-שלילית ומחזירה ערכים בין 0 לאינסוף (כולל אינסוף).
  • מידת לבג של קטע שווה לאורך הקטע.
  • מידת לבג היא סיגמא-סופית.
  • מידת לבג היא מידה שלמה.
  • מידת לבג של קבוצה בת מניה היא אפס.
  • משפט ויטלי: לכל קבוצה שמידתה שונה מאפס, קיימת תת-קבוצה שאיננה מדידה.
  • מידת לבג אינווריאנטית תחת הזזה: אם A מדידה, אזי A+c מדידה ו \ m(A) = m(A+c).

[עריכה] הבנייה של מידת לבג

יהי \ [a,b) \subset \mathbb{R} קטע (אינטרוול) ממשי. אזי האורך שלו, הוא \ l[a,b) = | [a,b) | = b - a . הגדרת האורך טובה לכל קטע - סגור או פתוח באחד או שניים מקצותיו. קל לראות שפונקציית האורך המוגדרת על קטעים היא אדיטיבית (סופית) על קבוצת כל הקטעים המוכלים בישר הממשי.

כדי להרחיב אותה לפונקציה סיגמא-אדיטיבית, נגדיר מידה חיצונית (Outer Measure) על הישר הממשי:

\  m^* (A \subset \mathbb{R} ) = \inf \left\{ \sum_{n}{|I_n|}  \ \  : \ \ A \subset \bigcup_{n}{I_n} \ \ \mbox{and} \ I_n \mbox{ are intervals} \right\}

קל לראות שהמידה החיצונית היא סיגמא-חצי-אדיטיבית (כלומר, \ m^* ( \bigcup_{n}{A_n} ) \le \sum_{n} m^* (A_n) ).

כדי להפוך אותה למידה עלינו לצמצמה על סיגמא-אלגברה שעליה היא תהיה סיגמא-אדיטיבית. סיגמא-אלגברה זו תיקרא "אוסף הקבוצות המדידות".

קבוצה A נקראת מדידה אם לכל קבוצה B מתקיים \ m^*(B) =m^*(A \cap B) + m^*(B - A).

אפשר להראות שעבור הישר הממשי, אוסף כל הקבוצות המדידות הוא הסיגמא-אלגברה הנוצרת על ידי כל קבוצות בורל והקבוצות בעלות מידה אפס. על הקבוצות המדידות, \ m(A) = m^*(A) וזו מידת לבג. אוסף הקבוצות המדידות מכיל מגוון רב של קבוצות שימושיות:

  • כל קטע (פתוח, סגור וכו') הוא קבוצה מדידה.
  • כל קבוצה פתוחה היא קבוצה מדידה.
  • כל קבוצה סגורה היא מדידה.
  • כל איחוד בן מניה של קבוצות סגורות ( \ F_{\sigma}) הוא קבוצה מדידה.
  • כל חיתוך בן מניה של קבוצות פתוחות ( \ G_{\delta}) הוא קבוצה מדידה.
  • כל איחוד או חיתוך בן-מניה של הקבוצות לעיל גם הוא קבוצה מדידה.
  • כל קבוצה בעלת מידה אפס היא קבוצה מדידה.
  • כל קבוצה בת-מניה היא קבוצה מדידה ומידתה היא אפס.

[עריכה] הכללה לממד כלשהו

את מידת לבג אפשר להכליל בקלות למרחב \ \mathbb{R}^n ובכך להכליל את מושג ה"היפר-נפח": אורך (n=1), שטח (n=2), הנפח (n=3) וכו. תהליך הבניה זהה לחלוטין, רק שבמקום בקטע משתמשים בהיפר-תיבות (מכפלה קרטזית של קטעים עם קצוות תחתונים סגורים וקצוות עליונים סגורים) \ I_n = \prod_{k=1}^{n}{ [a_k , b_k )} , ומגדירים נפח על חוג התיבות באמצעות \ v ( I_n) = \prod_{k=1}^{n}{| b_k - a_k |}. מכאן, מגדירים מידה חיצונית ומצמצמים אותה על אוסף כל הקבוצות המדידות הנוצרת על ידי חוג התיבות. במקרה זה, קבוצה A נקראת מדידה רק אם לכל \varepsilon > 0 קיימת קבוצה B בחוג התיבות כך ש \ m( A \Delta B) < \varepsilon כאשר Δ מסמל הפרש סימטרי של קבוצות.

[עריכה] יישומים

[עריכה] ראו עוד

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu