New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
ტოპოლოგია - ვიკიპედია

ტოპოლოგია

ვიკიპედიიდან

სიტყვას "ტოპოლოგია" აქვს სხვა მნიშვნელობებიც, იხილეთ ტოპოლოგია (მრავალმნიშვნელოვანი).

ტოპოლოგია (ბერძნ. topos - ადგილი, logos - სწავლა) — მათემატიკის დარგი, რომლის შესწავლის ობიექტებია ტოპოლოგიური სივრცეები, უწყვეტი ასახვები, და დაკავშირებული მათემატიკური ცნებები. მისი მეშვეობით ხდება მათემატიკაში ისეთი ფუნდამენტური ცნებების ფორმალიზება, როგორიცაა ბმულობა, კრებადობა, უწყვეტობა და ა.შ. მე–20 საუკუნის დასაწყისში დარგის დაარსებისას, მას geometria situs (ლათ. "ადგილის გეომეტრია") და analysis situs (ლათ. "ადგილის ანალიზი" ) უწოდებდნენ. 1925-75 წლებში მატემატიკის განვითარების ყველაზე მნიშვნელოვანი სფერო იყო.

მობიუსის ლენტი, ერთმხრიანი ზედაპირი. მსგავსი ფიგურები ხშირად გვხვდება ტოპოლოგიაში
მობიუსის ლენტი, ერთმხრიანი ზედაპირი. მსგავსი ფიგურები ხშირად გვხვდება ტოპოლოგიაში


სექციების სია

[რედაქტირება] ელემენტარული აღწერა

ტოპოლოგიის ერთ-ერთი თეორემა პოპულარულ ენაზე შემდეგნაირად შეიძლება ჩამოყალიბდეს: "შეუძლებელია თმით დაფარული ბურთის მთლიანად გლუვად დავარცხნა". ეს ინტუიციურად გასაგები ფაქტია. ფორმალურად კი იგივე თეორემა შემდეგში მდგომარეობს: "სფეროზე არ არსებობს არაქრობადი უწვეტი მხები სივრცე", და მისი დამტკიცება არატრივიალურია. ეს თეორემა სამართლიანია არა მარტო სფეროსათვის არამედ ყველა შეკრული ზედაპირისთვის ნახვრეტების გარეშე (გარკვეული პირობების დაკმაყოფილების შემთხვევაში) და უკავშირდება "გეომეტრიული ფიგურების" გარკვეულ ზოგად თვისებებს. ამ თვისებების გამოკვლევა ტოპოლოგიის საკითხია.

ხშირად ტოპოლოგიას აღწერენ როგორც გეომეტრიის ნაწილს, გეომეტრიული ობიექტების უზოგადესი თვისებების შესახებ, თვისებების რომლებიც უცვლელი რჩება უწყვეტი დეფორმაციების დროს (შეკუმშვა, გაწელვა, მოღუნვა; იხ. ნახატი ქვემოთ). გეომეტრიული ფიგურები, რომლებიც ერთიმეორისგან ამგვარი უწყვეტი დეფორმაციების საშუალებით მიიღება, ტოპოლოგიის თვალსაზრისით არ განსხვავდება (ჰომეომორფიზმი).

ფინჯანი, გირი და ბლითი "ტოპოლოგიურად" ერთიდაიგივე გეომეტრიულ ფიგურებია


ალგებრული ტოპოლოგიის ზოგადი მეთოდია სხვადასხვა "გეომეტრიული" ობიექტებისთვის უფრო გამოთვლადი "ალგებრული" (დისკრეტული) ინვარიანტების შეთანადება. ამბობენ რომ ალგებრული ტოპოლოგია სწავლობს გეომეტრიას, ალგებრის გამოყენებით. (ტოპოლოგიის სხვადასხვა დარგების შესახებ იხილეთ ქვემოთ).

ტოპოლოგიამ უმთავრესი გავლენა მოახდინა მათემატიკის ისეთ დარგებზე როგორიცაა: ალგებრული გეომეტრია, დიფერენციალური გეომეტრია, დინამიკური სისტემები, დიფერენციალური განტოლებები და სხვ.

[რედაქტირება] ისტორია

ტოპოლოგიური სივრცეები ბუნებრივად ჩნედება მათემატიკურ ანალიზში და გეომეტრიაში. როგორც მათემატიკის დამოუკიდებელი დისციპლინა ტოპოლოგია ჩამოყალიბდა 20–ე საუკუნის დასაწყისში და მალევე მათემატიკური კვლევის ერთ-ერთი უმთავრესი მიმართულება გახდა. ტოპოლოგიის წარმოშობას წინ უძღოდა 19–ე საუკუნის ბოლოს გეორგ კანტორის მიერ სიმრავლეთა თეორიის შექმნა. ტოპოლოგია არის მათემატიკის პირველი დარგი, რომლის ფორმულირება სიმრავლეთა თეორიის მეშვეობით განხორციელდა. ეს, თავის მხვრივ, გახდა სიმრავლეთა თეორიის თანამედროვე მათემატიკს დაფუძნების სტანდარტულ საშუალებად ქცევის მნიშვნელოვანი პირობა.

ტოპოლოგიის წარმოშობისათვის განსაკუთრებით აღსანიშნავია ანრი პუანკარეს შრომები, სადაც პირველად ჩნდება ჰომოლოგიის და ჰომოტოპიის ცნებები (1895). მოგვიანებით, 1906 წელს მორის ფრეშემ ფუნქციათა სივრცეებზე სხვადასხვა მათემატიკოსების შრომებიდან ერთიანი თეორიის შექმნის მიზნით შემოიტანა მეტრიკული სივრცის ცნება. სახელდობრ, ტოპოლოგიური სივრცის განმარტებები კი პირველად ჩამოაყალიბეს ფელიქს ჰაუსდორფმა (1914) და ოდნავ უფრო ზოგადი სახით კაზიმირ კურატოვსკიმ (1922). საქართველოში ტოპოლოგიურ კვლევას საფუძველი ჩაუყარა გიორგი ჭოღოშვილმა.

[რედაქტირება] ტოპოლოგიის მიმართულებები

პოლიჰედრა (კუბო- ჰემიოკტაჰედრონი)
პოლიჰედრა (კუბო- ჰემიოკტაჰედრონი)

ტოპოლოგია მოიცავს ერთმანეთისგან საკმაოდ დაშორებულ რამდენიმე ქვედარგს.

  • სიმრავლური ტოპოლოგია ანუ ზოგადი ტოპოლოგია იკვლევს ზოგად ტოპოლოგიურ სივრცეებს. მისი პირველი თეორემები შეეხება ტოპოლოგიური სივრცეების ფუნდამენტურ თვისებებს (იხ. ქვემოთ), რომლებიც მნიშვნელოვანია მათემატიკის სხვა ნაწილებში. სიმრავლური ტოპოლოგია თანამედროვე მათემატიკური ანალიზის სტანდარტული საფუძველია.
  • ალგებრულ ტოპოლოგიაში შეისწავლება უფრო ვიწრო ტოპოლოგიური სივრცეების კლასები, მაგალითად პოლიჰედრები და CW კომპლექსები. დარგი ინტენსიურად იყენებს აბსტრაქტულ ალგებრას. მე–20 საუკუნის მეორე ნახევრიდან მასზე გავლენა იქონია კატეგორიათა თეორიამ (იხ. წარმოუბული ფუნქტორი, სიმპლიციალური სიმრავლე). თავის მხრივ, ალგებრული ტოპოლოგიის იდეებს გავლენა აქვთ ალგებრულ გეომეტრიაზე, ალგებრასა და კატეგორიათა თეორიაზე. ალგებრულმა ტოპოლოგიამ თანამედროვე მათემატიკაში შემოიტანა ისეთი მნიშვნელოვანი ცნებები, როგორიცაა: დამფარავი ასახვა, ფიბრაცია, ფუნდამენტური ჯგუფი, ჰომოტოპია, ჰომოლოგია, კოჰომოლოგია, სპექტრალური მიმდევრობა.
კვანძების თეორია. ტოპოლოგიის ქვედარგი
კვანძების თეორია. ტოპოლოგიის ქვედარგი
  • ტოპოლოგიის კიდევ ერთი ვრცელი დარგი დიფერენციალური ტოპოლოგია იკვლევს აბსტრაქტულ დიფერენციალურ სტრუქტურებს, ეს მოიცავს: დიფერენციალურ მრავალნაირობებს, დიფერენციალურ ფორმებს და ა.შ. ისტორიულად იგი აღმოცენდა დიფერენციალური განტოლებების შესწავლიდან. დიფერენციალური ტოპოლოგიის ცნობილი სტოქსის თეორემა არის ანალიზის ფუნდამენტური თეორემის განზოგადება დიფერენციალური ფორმებისთვის.

ტოპოლოგიის სხვა მიმართულებებია, მაგალითად, კვანძების თეორია, (კო)ბორდიზმების თეორია, ტოპოლოგიური K-თეორია და სხვ.

[რედაქტირება] ზოგადი ტოპოლოგიის ზოგიერთი თეორემა

  • ტიხონოვის თეორემა: კომპაქტური სივრცეების ნამრავლი კომპაქტურია.
  • ტიცეს გაფართოების თეორემა: ნორმალური სივრცის ნებისმიერ ჩაკეტილ ქვესიმრავლეზე განმარტებული ნამდვილი უწყვეტი ფუნქცია შეიძლება გავრცელდეს მთელ სივრცეზე.
  • ბერის კატეგორიის თეორემა: თუ X სრული მეტრიკული სივრცეა ან ლოკალურად კომპაქტური ჰაუსდორფის სივრცე, მაშინ მისი არსადმკვრივი ქვესიმრავლეების ნებისმიერი თვლადი გაერთიანების ბირთვი ცარიელია.

[რედაქტირება] უფრო ზოგადი თეორიები

შედეგების ანალიზს და შემდგომ მათემატიკურ აბსტრაგირებას მივყავართ უფრო ზოგადი სტრუქტურების კვლევისკენ. უწერტილო ტოპოლოგია სწავლობს ტოპოლოგიურ სივრცეებთან დაკავშირებულ თვისებებს კიდევ უფრო ზოგად სიტუაციებში. თავდაპირველად ტოპოლოგიაში გაჩენილმა იდეებმა აგრეთვე განვითარება ჰპოვა კატეგორიათა თეორიის სხვადასხვა კონტექსტში.

[რედაქტირება] ლიტერატურა

  • James Munkres (1999). Topology, 2nd edition, Prentice Hall.
  • John L. Kelley (1975). General Topology. Springer-Verlag.
  • Allen Hatcher, Algebraic Topology , Cambridge University Press, Cambridge, 2002.
  • В.Г.Болтянский, В.А.Ефремович, Наглядная топология выпуск 21 серии «Библиотечка квант» М., Наука, 1982.

[რედაქტირება] იხილეთ ასევე

  • ბმული სივრცე
  • ეილერის მახასიათებელი
  • კომპაქტური სივრცე
  • მეტრიზაცია (ტოპოლოგია)
  • უწყვეტი ასახვა
  • ღია სიმრავლე
  • ჰაუსდორფის სივრცე


მათემატიკის მთავარი დარგები
ალგებრა | უმაღლესი ალგებრა | წრფივი ალგებრა | ანალიზი | ფუნქციონალური ანალიზი | კომპლექსური ანალიზი | რიცხვითი ანალიზი | დიფერენციალური განტოლებები | რიცხვთა თეორია | დისკრეტული მათემატიკა | სიმრავლეთა თეორია | ლოგიკა | კატეგორიათა თეორია | გეომეტრია | ალგებრული გეომეტრია | ტოპოლოგია | ალგებრული ტოპოლოგია | დიფერენციალური ტოპოლოგია | ალბათობის თეორია | სტატისტიკა

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu