სიმრავლეთა თეორია
ვიკიპედიიდან
სიმრავლეთა თეორია - მათემატიკის დარგი სიმრავლეების შესახებ. სიმრევლეთა თეორიას ეფუძნება რიგი მათემატიკირი დისციპლინებისა, მათ შორის: ალგებრა, ანალიზი, ტოპოლოგია, ალბათობის თეორია.
მე–19 საუკუნის ბოლოს გერმანელმა მათემატიკოსმა გეორგ კანტორმა შექმნა მათემატიკის სტანდარტიზაციის მისეული პროგრამა, რომლის მიხედვით ყველა მათემატიკური ობიექტი "სიმრავლე" უნდა ყოფილიყო, სიმრავლეს კი კანტორი მხოლოდ ზედაპირულად განმარტავდა, როგორც "ბევრი გააზრებული ერთიანად" და ა. შ. კანტორის ამგვარი დამომიდებულება თვით სიმრავლის ცნების მიმართ იმაშიც აისახება, რომ იგი თავის თეორიას ეძახდა არა "სიმრავლეთა თეორიას" არამედ სწავლებას სიმრავლეების შესახებ (Mengenlehre). დღეს ეს თეორია ხშირად ცნობილია "გულუბრყვილო სიმრავლეთა თეორიის" სახელით.
მე–20 საუკუნის დასაწყისში ბერტრან რასელი გულუბრყვილო სიმრავლეთა თეორიის შესწავლისას მივიდა პარადოქსთან (მას შემდეგ ცნობილი როგორც რასელის პარადოქსი), რითაც ნათელი გახდა, რომ სიმრავლეთა თეორია უფრო მკაცრ ლოგიკურ დაფუძნებას მოითხოვდა. ამგვარად დავიდ ჰილბერტის და სხვების მიერ შემუშავებული იქნა სხვადასხვა აქსიომატური სიმრავლეთა თეორიები.
დღესდღეობით სიმრავლეთა თეორიის ყველაზე უფრო გავრცელებული აქსიომატიური თეორიაა ცერმელო–ფრანკელის თეორია.
[რედაქტირება] იხილეთ ასევე
- ამორჩევის აქსიომა
- თვლადი სიმრავლე
- კარდინალური რიცხვი
- მოქმედებები სიმრავლეებზე
- პეანოს აქსიომები
- ცორნის ლემა
მათემატიკის მთავარი დარგები | |
---|---|
ალგებრა | უმაღლესი ალგებრა | წრფივი ალგებრა | ანალიზი | ფუნქციონალური ანალიზი | კომპლექსური ანალიზი | რიცხვითი ანალიზი | დიფერენციალური განტოლებები | რიცხვთა თეორია | დისკრეტული მათემატიკა | სიმრავლეთა თეორია | ლოგიკა | კატეგორიათა თეორია | გეომეტრია | ალგებრული გეომეტრია | ტოპოლოგია | ალგებრული ტოპოლოგია | დიფერენციალური ტოპოლოგია | ალბათობის თეორია | სტატისტიკა |