Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Lijn (meetkunde) - Wikipedia

Lijn (meetkunde)

Van Wikipedia

Het begrip lijn laat zich moeilijk expliciet definiëren. Men denkt zich een lijn als een continue aaneengeschakeling van punten. Daarbij treedt voor het begrip punt dezelfde moeilijkheid op om tot een exacte definitie te komen. In de meetkunde worden (rechte) lijnen en punten daarom als grondbegrippen beschouwd, waarvan de eigenschappen axiomatisch vastgelegd worden.

Men zegt wel quasi exact: een rechte lijn is de kortste verbinding tussen twee punten.

Rechte lijnen worden in de wiskunde aangeduid als rechte. Een niet rechte lijn heet in de wiskunde een kromme.

We onderscheiden drie soorten rechten:

  • een rechte die aan beide kanten onbegrensd doorloopt;
  • een halfrechte (of straal), begrensd door een punt en aan één zijde oneindig doorlopend;
  • een lijnstuk, een rechte die begrensd wordt door twee punten.

[bewerk] Representatie

Er zijn verscheidene manieren om een rechte lijn vast te leggen.

  • Door twee punten P en Q van de lijn te geven, ligt de lijn vast.
  • Een andere veelgebruikte methode is een punt P op de lijn en een richtingsvector \vec{v} te geven.
  • Door in een cartesisch assenstelsel een lijnvergelijking te geven.

[bewerk] Lijnvergelijking

Als in een xy-assenstelsel de punten P en Q gegeven zijn door:

P=(x_P,y_P),\ Q=(x_Q,y_Q) \,,

wordt de lijn in geparametriseerde vorm bepaald door:

(x,y)=(1-t)(x_P,y_P)+t(x_Q,y_Q) \,.

Dit kan ook herschreven worden als:

(x,y)=(x_P,y_P)+t(x_Q-x_P,y_Q-y_P) \,,

wat overeenkomt met de voorstelling door middel van het punt P en de richtingsvector \vec{PQ}.

Als in een xy-assenstelsel het punt P en de richtingsvector v gegeven zijn door:

P=(x_0,y_0),\ v=(x_1,y_1) \,,

wordt de lijn in geparametriseerde vorm bepaald door:

(x,y)=(x_0,y_0)+t(x_1,y_1) \,,

dus door de coördinaatfuncties:

x=x_0+tx_1\,
y=y_0+ty_1\,

Door eliminatie van de parameter t ontstaat de algemene vergelijking voor een rechte in een xy-assenstelsel:

p x + q y + r = 0 \,.

Deze kan voor q \neq 0 geschreven worden als:

y=a x+b \,.

Voor q = 0 \, is de lijn evenwijdig aan de y-as; de vergelijking is:

x=c \,.

Daarin is a de richtingscoëfficiënt. Als je een afstand 1 naar rechts gaat, dan is de richtingscoëfficiënt de afstand die je omhoog gaat (of omlaag als de richtingscoëfficiënt negatief is). Het getal b heet intercept en is de y-waarde van het snijpunt van de lijn met de y-as.

Analoog geldt in drie dimensies voor de lijn door het punt P met richtingsvector v, gegeven door:

P=(x_0,y_0,z_0),\ v=(x_1,y_1,z_1) \,,

de geparametriseerde vorm:

(x,y,z)=(x_0,y_0,z_0)+t(x_1,y_1,z_1) \,,

De coördinaatfuncties zijn dus:

x=x_0+tx_1\,
y=y_0+ty_1\,
z=z_0+tz_1\,

Ook hieruit kan weer door eliminatie van de parameter t een voorstelling van de lijn in de vorm van vergelijkingen gevonden worden. Deze voorstelling kunnen we ook bedenken door de lijn als snijlijn van twee vlakken op te vatten, dus voldoend aan elk van de beide vergelijkingen voor de vlakken:

p_1 x + q_1 y + r_1 z + s_1 = 0 \,.
p_2 x + q_2 y + r_2 z + s_2 = 0 \,.
 
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu