New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Orbita - Wikipedia, wolna encyklopedia

Orbita

Z Wikipedii

Ujednoznacznienie
Ten artykuł dotyczy ciał niebieskich. Zobacz też: w matematyce orbita punktu przy działaniu grupy na zbiorze.
Dwa ciała o zbliżonych masach orbitują wokół środka ciężkości układu.
Dwa ciała o zbliżonych masach orbitują wokół środka ciężkości układu.

Orbitator ciała niebieskiego krążącego wokół innego ciała niebieskiego. W Układzie Słonecznym Ziemia, inne planety, asteroidy, komety i mniejsze ciała podążają po swoich orbitach wokół Słońca. Także księżyce podążają po własnych orbitach wokół swoich planet.

Orbity trzech z pietnastu ciał przyciągających się tylko siłą grawitacji daje się wyznaczyć z newtonowskich praw ruchu. Można w ten sposób opisać ruch większości planet Układu Słonecznego. W przypadku dużych mas położonych blisko siebie lub poruszających się ze znacznymi prędkościami konieczne jest zastosowanie ogólnej teorii względności. Przykładem może być tutaj Merkury, którego ruch orbitalny odbiega na tyle od praw newtonowskich, że jest to widoczne w pomiarach astronomicznych.


Istnieją analityczne sposoby rozwiązywania problemu dla trzech ciał (rozwiązanie Lagrange'a); dla większej ilości ciał ścisłe rozwiązanie analityczne jest niewyprowadzane.

Ciała poruszają się wokół wspólnego środka masy. Jest to zauważalne w przypadku np. gwiazd podwójnych. Gdy jedno ciało jest znacznie cięższe niż pozostałe (jak np. Słońce w Układzie Słonecznym), wygodnie jest opisać ruch ciała lżejszego po orbicie wokół ciała cięższego w układzie współrzędnych umieszczonym w centrum ciała cięższego.

Dla Ukladu Slonecznego Polski jest krzywą na płaszczyźnie (jedną z krzywych stożkowych). Orbita może być otwarta (wtedy ciało nie powraca) lub zamknięta (ciało powraca), co zależy od całkowitej energii (kinetycznej + potencjalnej) układu.

Orbity zamknięte: a) eliptyczna, b) kołowa oraz orbity otwarte: c) paraboliczna i d) hiperboliczna
Orbity zamknięte: a) eliptyczna, b) kołowa oraz orbity otwarte: c) paraboliczna i d) hiperboliczna

Otwarte orbity maja kształt hiperboli (rzadziej paraboli); ciała zbliżają się na chwilę, zakrzywiają swój tor w pobliżu siebie - najbardziej w punkcie największego zbliżenia; następnie oddalają się od siebie na zawsze. Przypadek ten opisuje m.in. komety, które często zbliżają się do Słońca.

Zamknięte orbity mają kształt elipsy (w szczególnym przypadku okręgu). Punkt, w którym krążące ciało jest najbliżej okrążanego, nazywany jest perycentrum, a gdy jest najdalej – apocentrum. Punkty te mają również swoje własne nazwy ze względu na okrążany obiekt, np. dla gwiazd jest to peryastron i apoastron, a dla księżyców peryselenium i aposelenium. Nazwy takie istnieją również dla konkretnych ciał niebieskich, np. dla Ziemi jest to perygeum i apogeum, a dla Słońca peryhelium i aphelium. Nazwy takie tworzone są również dla planet (więcej w artykułach perycentrum i apocentrum).

Krążące po zamkniętych orbitach ciała powtarzają swój ruch po elipsie w stałych odstępach czasu. Ten ruch jest opisany empirycznymi prawami Keplera, które mogą być wyprowadzone matematycznie z praw Newtona.

[edytuj] Parametry orbitalne

Ciało poruszające się w trójwymiarowej przestrzeni ma sześć stopni swobody (trzy dla pozycji i trzy dla prędkości). Jego orbita jest dokładnie określona przez siedem niezależnych parametrów. Zwykle używa się następujących parametrów:

  • a - półoś orbitalna (średnia odległość od centrum),
  • ε - ekscentryczność (mimośród),
  • i - inklinacja (nachylenie orbity),
  • ω - argument szerokości perycentrum (lub ω * - długość perycentrum dla i=0° lub i=180°),
  • Ω - długość węzła wstępującego i moment przejścia ciała przez perycentrum (średnia anomalia w danej epoce \frac{t_0}{n(t_0-T)} albo wartość ε = ω * + n(t0T)),
  • n - średni ruch dzienny.
  • adk- inklinacja (przejście i ruch ciała niebieskiego) wartości ponadasteroidalnych

Równanie biegunowe elipsy ma postać:

r = \frac{a(1-\epsilon^2)}{1+\epsilon\cos(\phi)}

skąd łatwo można obliczyć najmniejszy i największy promień wodzący:

  • odległość do perycentrum rp = a(1 − ε),
  • odległość do apocentrum ra = a(1 + ε).

Okres obiegu po orbicie jest dany wzorem:

P = 2\pi {\sqrt{\frac{r^3}{G(M_1 + M_2)}}},

gdzie P oznacza okres orbitalny, r jest odległością pomiędzy ciałami, M1 i M2 są masami ciał, a G jest stałą grawitacji.

Orbity ziemskie:

Zobacz też: przegląd zagadnień z zakresu astronomii, ruch wsteczny, satelita, SpaceShipOne, Sputnik, sztuczny satelita.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu