Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Parábola - Wikipédia

Parábola

Origem: Wikipédia, a enciclopédia livre.

Nota: Para outros significados de Parábola, ver Parábola (desambiguação).
Uma parábola
Uma parábola

A parábola (do grego: παραβολή) é uma seção cônica gerada pela interseção de uma superfície cônica de segundo grau e um plano paralelo a uma linha geradora do cone (chamada de geratriz). Uma parábola também pode ser definida como o conjunto dos pontos que são equidistantes de um ponto dado (chamado de foco) e de uma reta dada (chamada de diretriz).

Um caso particular surge quando o plano é tangente à supérfície cônica. Neste caso a interseção é uma parábola degenerada, consistindo de uma reta.

Índice

[editar] Definições e visão geral

Um gráfico mostrando as propriedade reflexivas,a diretriz (em verde), e as linhas conectando o foco e e diretriz à parábola (em azul)
Um gráfico mostrando as propriedade reflexivas,a diretriz (em verde), e as linhas conectando o foco e e diretriz à parábola (em azul)

[editar] Equações da geometria analítica

Em coordenadas cartesianas, uma parábola com um eixo paralelo ao eixo y com vértice (h, k), foco (h, k + p), e diretriz y = k - p, com p sendo a distância entre o vértice e o foco, possui a equação

(x - h)^2 = 4p(y - k) \,

ou, alternativamente

(y - k) = \frac{1}{4p}(x-h)^2 \,

De maneira geral, uma parábola é uma curva no plano cartesiano definida por uma equação irredutível da forma :Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 tal que B2 = 4AC, aonde todos os coeficientes são reais, onde A e/ou C é não nulo, e onde mais de uma solução, definindo um par de pontos (x, y) na parábola, existe. O fato da equação ser irredutível significa que ela não pode ser fatorada como um produto de dois fatores lineares.

[editar] Outras definições geométricas

Uma parábola também pode ser caracterizada com uma seção cônica com uma excentricidade igual a 1. Como uma consequência disso, todas as parábolas são similares. Uma parábola também pode ser obtida como o limite de uma sequência de elipses onde um foco é mantido fixo e o outro pode se mover para uma distância cada vez maior do foco em uma direção. Desta forma, uma parábola pode ser considerada uma elipse que possui um foco no infinito. A parábola é a transformada inversa de um cardióide.

Uma parábola possui um eixo único de simetria reflexiva, o qual passa através de seu foco e é perpendicular à diretriz. O ponto de interseção de seu eixo e de parábola é chamado de vértice. Se girarmos uma parábola através de seu eixo em um gráfico de três dimensões temos uma forma conhecida como o parabolóide de revolução.

Parábola é uma curva gerada por todos pontos que se situam igualmente distantes de um ponto e uma reta ( chamados de Foco e Diretriz respectivamente ).

[editar] Equações

Parábola com foco (P) e diretriz (L)
Parábola com foco (P) e diretriz (L)

Considerando o vértice (h, k) e a distância p entre o vértice e o foco. Note que se o vértice estiver abaixo do foco, ou equivalentemente abaixo da diretriz, p é positivo, caso contrário p é negativo.

[editar] Cartesiana

[editar] Eixo vertical de simetria
(x - y)^2 = 4p(y - x) \,
y = a(y-x)^2 + y \,
y = ax^2 + bx + c \,
\mbox{onde }a = \frac{1}{4p}; \ \ b = \frac{-h}{2p}; \ \ c = \frac{x^2}{4p} + y; \ \
x = \frac{-b}{2a}; \ \ y = \frac{4ac - b^2}{4a}.
x(t) = 2pt + x; \ \ y(t) = pt^2 + y \,

[editar] Eixo horizontal de simetria
(y - k)^2 = 4p(x - h) \,
x = a(y - k)^2 + h \,
x = ay^2 + by + c \,
\mbox{onde }a = \frac{1}{4p}; \ \ b = \frac{-y}{2p}; \ \ c = \frac{y^2}{4p} + x; \ \
x = \frac{4ac - b^2}{4a}; \ \ y = \frac{-b}{2a}.
x(t) = pt^2 + h; \ \ y(t) = 2pt + k \,

[editar] Semi-reta e coordenadas polares

Em coordenadas polares, uma parábola com o foco na origem e topo no eixo x negativo é dada pela equação

r (1 - \cos \theta) = l \,

onde l é a distância do foco à parábola, medida através de uma linha perpendicular ao eixo. Note que esta é o dobro da distância do foco ao vertex da parábola ou a distância perpendicular do foco à diretriz.

[editar] Forma em coordenadas gaussianas

A forma em coordenadas gaussianas é dada por: (tan2φ,2tanφ) e possui a normal (cosφ,sinφ).

[editar] Aplicações práticas

Em nosso dia-a-dia, as parábolas são utilizadas em diversos equipamentos e sistemas de vital importância para nossa sociedade. Dentre eles, podemos destacar:

[editar] Antenas parabólicas e Radares:

É comum observarmos no alto de residências e edifícios as Antenas Parabólicas, que captam ondas eletromagnéticas que são enviadas por satélites em órbita ao redor da terra. Isto somente é possível devido à propriedade da parábola de refletir o conjunto de raios recebidos em um único ponto (o foco da parábola). Neste ponto encontra-se posicionado o receptor de ondas, que enviará o sinal recebido para um conversor que as decodificará e enviará para o receptor de televisão. Os aparelhos de radar operam de forma semelhante às antenas parabólicas, recebendo o eco de pulsos eletromagnéticos.

[editar] Faróis de veículos:

As lentes parabólicas posicionadas na parte de trás dos faróis dos veículos permitem que a luz gerada pelos mesmos seja direcionada para um ponto específico, o foco da parábola, que normalmente é apontado para o solo, evitando desta forma que a luz de um carro ofusque a visão de um motorista que venha em direção oposta.

[editar] Lançamento de projéteis:

Quando lançamos um objecto (míssil, pedra, flecha, etc.), desprezando o resistência do ar, este descreve uma curva parabólica.

[editar] Ver também

[editar] Ligações externas

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu