Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Vektorový součin - Wikipedie, otevřená encyklopedie

Vektorový součin

Z Wikipedie, otevřené encyklopedie

Vektorový součin je v matematice označení binární operace mezi dvěma vektory v trojrozměrném vektorovém prostoru. Výsledkem této operace je vektor (na rozdíl od součinu skalárního, jehož výsledkem je při součinu dvou vektorů skalár). Výsledný vektor je kolmý k oběma původním vektorům.

Obsah

[editovat] Značení

Vektorový součin vektorů \mathbf{a}, \mathbf{b} se obvykle značí jedním z následujících způsobů:

  • \mathbf{a} \times \mathbf{b}
  • \mathbf{a} \wedge \mathbf{b} - používáno ve frankofonních zemích
  • [\mathbf{a}\mathbf{b}] - používáno v Rusku
  • [\mathbf{a},\mathbf{b}]

[editovat] Definice

Vektorový součin vektorů a a b je definován jako vektor kolmý k vektorům a a b s velikostí rovnou ploše kosoúhelníku, který oba vektory definují:

\mathbf{a} \times \mathbf{b} = \mathbf{n} \left| \mathbf{a} \right| \left| \mathbf{b} \right| \sin \theta

kde θ je úhel svíraný vektory a a b (0° ≤ θ ≤ 180°) a n je jednotkový vektor kolmý k nim. Takové jednotkové vektory však existují dva; volba závisí na tom, je-li souřadný systém definován jako pravotočivý nebo levotočivý. V pravotočivém souřadném systému lze použít pravidlo pravé ruky: jsou-li vektory a a b znázorněny ukazovákem a prostředníkem pravé ruky, pak vektorový součin a × b má směr palce.

Vektorový součin
Vektorový součin

Vektorový součin lze definovat také bez pomoci úhlu, který oba vektory svírají. Máme-li vektorový součin \mathbf{c} = \mathbf{a} \times \mathbf{b}, pak složky vektoru c lze určit jako

c1 = a2b3a3b2
c2 = a3b1a1b3
c3 = a1b2a2b1

Pomocí Levi-Civitova symbolu je možné složky vektorového součinu zapsat jako

c_i = \varepsilon_{ijk} a_j b_k

Složky vektorového součinu lze také chápat jako prvky antisymetrického tenzoru druhého řádu

dij = aibjajbi

Počet nezávislých složek takovéhoto antisymetrického tenzoru je roven třem pouze ve třírozměrném prostoru, proto lze provést přiřazení

d23 = − d32 = c1 = a2b3a3b2
d31 = − d13 = c2 = a3b1a1b3
d12 = − d21 = c3 = a1b2a2b1
d11 = d22 = d33 = 0

Tento tenzorový zápis umožňuje použití vektorového součinu i v prostorech s dimenzí různou od 3.

[editovat] Vlastnosti

  • Vektorový součin je antikomutativní, tzn.
\mathbf{u} \times \mathbf{v} = - \mathbf{v} \times \mathbf{u}
a (\mathbf{u} \times \mathbf{v}) = (a \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (a \mathbf{v})
\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}
  • Je-li pro dva nenulové vektory \mathbf{u}, \mathbf{v} jejich vektorový součin nulový, tzn. \mathbf{u} \times \mathbf{B} = \mathbf{0}, pak jsou vektory \mathbf{u}, \mathbf{v} rovnoběžné.
  • Vyjádříme-li bázi třírozměrného vektorového prostoru pomocí jednotkových vektorů ortogonální báze i, j, k, pak
\mathbf{i} \times \mathbf{j} = \mathbf{k}
\mathbf{j} \times \mathbf{k} = \mathbf{i}
\mathbf{k} \times \mathbf{i} = \mathbf{j}
  • V uvedené bázi lze vektorový součin vektorů u, v zapsat pomocí determinantu jako
\mathbf{u} \times \mathbf{v} =  \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}

[editovat] Výpočet

Souřadnice vektorového součinu dvou vektorů lze vypočítat bez stanovování úhlu, který vektory svírají: Nechť

a = [a1, a2, a3]

a

b = [b1, b2, b3].

Potom

a × b = [a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1].


[editovat] Použití

Vektorový součin je hojně využíván v elektromagnetismu, např. pro výpočet Lorentzovy síly. Dalším příkladem je moment síly \mathbf{M}, který je definován \mathbf{M} = \mathbf{r} \times \mathbf{F} kde \mathbf{r} je polohový vektor působiště síly.


[editovat] Podívejte se také na

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu