Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Ethernet - Wikipedia

Ethernet

aus Wikipedia, der freien Enzyklopädie

Ethernet [ˈi:θənɛt] ist eine kabelgebundene Datennetztechnologie für lokale Datennetze (LANs). Sie ermöglicht den Datenaustausch in Form von Datenrahmen zwischen allen in einem lokalen Netz (LAN) angeschlossenen Geräten (Computer, Drucker, etc.). Nur in seiner traditionellen Ausprägung erstreckt sich das LAN dabei nur über ein Gebäude. Ethernet-Technologie verbindet heute auch Geräte über weite Entfernungen.

Ethernet umfasst Festlegungen für Kabeltypen und Stecker, beschreibt die Signalisierung für die Bitübertragungsschicht und legt Paketformate und Protokolle fest. Aus Sicht des OSI-Modells spezifiziert Ethernet sowohl die physikalische Schicht (OSI Layer 1) als auch die Data-Link-Schicht (OSI Layer 2). Ethernet ist weitestgehend in der IEEE-Norm 802.3 standardisiert. Es wurde ab den 1990ern zur meistverwendeten LAN-Technologie und hat alle anderen LAN-Standards wie Token Ring verdrängt oder wie beispielsweise ARCNET in Industrie- und Fertigungsnetzen oder FDDI in hoch verfügbaren Netzwerken zu Nischenprodukten für Spezialgebiete gemacht. Ethernet kann die Basis für Netzwerkprotokolle, wie z. B. AppleTalk, DECnet, IPX/SPX oder TCP/IP bilden.

Ethernet mit TCP/IP-Protokollstapel

Anwendung FTP SMTP HTTP DNS DHCP ...
Transport TCP UDP
Internet IP ARP
Netzzugang Ethernet


Ethernet mit AppleTalk-Protokollstapel (EtherTalk)

Anwendung AFP ADSP
Management ZIP ASP NBP RTMP AEP
Transport ATP
Internet DDP
Netzzugang ELAP AARP
Ethernet

Inhaltsverzeichnis

[Bearbeiten] Geschichte

Ethernet wurde ursprünglich am Xerox Palo Alto Research Center (PARC) entwickelt. Eine weitverbreitete Geschichte besagt, dass Ethernet 1973 erfunden wurde, als Robert Metcalfe ein Memo über das Potenzial von Ethernet an seine Vorgesetzten schrieb. Er leitete das Protokoll von dem auf der Universität von Hawaii entwickelten funkbasierten ALOHAnet ab. Daher auch der Name Ethernet (engl. für „Äther“, der nach früheren Annahmen das Medium zur Ausbreitung von (Funk-)Wellen ist). Metcalfe selbst sagt, dass Ethernet über mehrere Jahre entwickelt wurde und sich daher kein Zeitpunkt festmachen lässt.

Ursprünglich war es also ein firmenspezifisches und nicht standardisiertes Produkt. Diese erste Version des Ethernet arbeitet noch mit 3 Mbit/s. 1976 veröffentlichten Metcalfe und sein Assistent David Boggs einen Artikel (s. Grafik) mit dem Titel Ethernet: Distributed Packet-Switching For Local Computer Networks.

Bob Metcalfe verließ Xerox 1979, um die Benutzung von Personal Computern und LANs zu fördern, und gründete die Firma 3Com. Er überzeugte erfolgreich DEC, Intel und Xerox, mit ihm zusammenzuarbeiten, um Ethernet zum Standard zu machen. Ihre erste Ethernet-Version 1 wurde ab 1980 vom IEEE (Institute of Electrical and Electronics Engineers) in der Arbeitsgruppe 802 weiterentwickelt. Ursprünglich war nur ein LAN-Standard für Übertragungsgeschwindigkeiten zwischen 1 und 20 Mbit/s geplant. Ebenfalls 1980 kam noch eine sogenannte „Token-Access-Methode“ hinzu. Ab 1981 verfolgte das IEEE dann drei verschiedene Techniken: CSMA/CD (802.3), Token Bus (802.4) und Token Ring (802.5), wovon die letzten beiden bald in einer wahren Flut von Ethernet-Produkten untergingen. 3Com wurde dabei ein großes Unternehmen.

Die Arbeiten am Cheapernet-Standard (10Base2) wurden im Juni 1983 veröffentlicht. Zur gleichen Zeit begann die Arbeit an den Spezifikationen für Ethernet-on-Broadband (10Broad36) und für das StarLAN (1Base5). Als 1985 der Ethernet-Standard auch als internationaler Standard ISO/DIS 8802/3 veröffentlicht wurde, wurde er binnen kurzer Zeit von über 100 Herstellerfirmen unterstützt. 1986 begannen einige kleinere Firmen mit der Übertragung von Daten im Ethernet-Format auf Vierdrahtleitungen. Danach verstärkte das IEEE seine Aktivitäten in den Gebieten Ethernet-on-Twisted Pair, was 1991 zu einem Standard wurde, sowie Ethernet auf Glasfaserleitungen, was 1992 zu den 10BaseF-Standards (F für Fibre-Optics) führte. Mitte der 90er Jahre kam es zu einem Tauziehen um den Nachfolge-Standard; auf der einen Seite standen AT&T und HP, die eine technisch elegantere Lösung nach IEEE_802.12 (100BaseVG) anstrebten, auf der anderen Seite standen die Hersteller der Fast Ethernet Alliance, bestehend aus ca. 35 namhaften Firmen wie Bay Networks, 3Com, Intel, SUN, Novell usw., die 100 Mbit/s nach dem altbewährten IEEE_802.3-Standard propagierten.

Letztendlich wurde 1995 der 100 Mbit/s-Standard für Ethernet auf Bestreben der Fast Ethernet Alliance gemäß IEEE_802.3u 1995 verabschiedet, etwa zeitgleich zum Standard für ein Wireless-LAN mit der Bezeichnung 802.11. Inzwischen nehmen die Arbeiten am 10-Gigabit-Ethernet und am Ethernet in the First Mile (EFM) statt des reinen Inhouse-Betriebs bereits Universitäts- und Stadtnetze ins Visier.

[Bearbeiten] Bitübertragungsschicht

Ethernet basiert auf der Idee, dass die Teilnehmer eines LANs Nachrichten durch eine Art Funk-System versenden, allerdings nur innerhalb eines gemeinsamen Leitungsnetzes, das manchmal als Äther bezeichnet wurde (der Äther war in der Vorstellung des 19. Jahrhunderts der Stoff, durch den sich das Licht hindurch bewegte). Jeder Teilnehmer hat einen global eindeutigen 48-bit-Schlüssel, der als seine MAC-Adresse bezeichnet wird. Dies soll sicherstellen, dass alle Systeme in einem Ethernet unterschiedliche Adressen haben. Ethernet überträgt die Daten auf dem Übertragungsmedium dabei im sogenannten Basisbandverfahren, d. h. in digitalem Zeitmultiplex.

[Bearbeiten] Der CSMA/CD-Algorithmus

Ein Algorithmus mit dem Namen „Carrier Sense Multiple Access with Collision Detection“ (CSMA/CD) regelt den Zugriff der Systeme auf das gemeinsame Medium. Man kann sich das gemeinsame Medium als ein Kabel in einer Art Bus-Topologie vorstellen. Es ist eine Weiterentwicklung des ALOHAnet-Protokolls, das in den 1960er-Jahren auf Hawaii zum Einsatz kam.

In der Praxis funktioniert dieser Algorithmus bildlich wie eine Party, auf der alle Gäste ein gemeinsames Medium (die Luft) benutzen, um miteinander zu sprechen. Bevor sie zu sprechen beginnen, warten sie höflich darauf, dass der andere Gast zu reden aufgehört hat. Wenn zwei Gäste zur gleichen Zeit zu sprechen beginnen, stoppen beide und warten für eine kurze, zufällige Zeitspanne, bevor sie einen neuen Anlauf wagen.

Damit die Kollision festgestellt und eine Sendewiederholung initiiert werden kann, müssen die Datenframes abhängig von der Leitungslänge eine bestimmte Mindestlänge haben. Diese ergibt sich aus der physikalischen Übertragungsgeschwindigkeit (ca. 2/3 Lichtgeschwindigkeit) und der Übertragungsrate. Bei einer Übertragungsrate von 10 Mbit/s und einer maximalen Entfernung von 2,5 km zwischen zwei Stationen ist eine Mindestlänge von 64 Byte vorgeschrieben. Kleinere Datenframes müssen entsprechend aufgefüllt werden.

Auch wenn die Norm IEEE 802.3 den Namen "CSMA/CD" im Titel hat, spielt diese Form der Kollisionsauflösung heute nur mehr in geringem Maße eine Rolle. Die meisten Netzwerke werden heute im Vollduplex-Modus betrieben, bei dem Switches für die Zugriffsauflösung sorgen und keine Kollisionen mehr entstehen können. Trotzdem blieb das Frameformat, insbesondere der Frame Header und die für die Kollisionserkennung vorgeschriebene minimale Frame-Länge, bis hinauf zu 10-GBit-Ethernet unverändert.

[Bearbeiten] Broadcast und Sicherheit

Da die gesamte Kommunikation auf derselben Leitung passiert, wird jede Information, die von einem Computer gesendet wurde, von allen empfangen. Diese Tatsache kann von Protokollen auf höheren Schichten genutzt werden, um Broadcast- (dt. Rundruf)-Nachrichten an alle angeschlossenen Systeme zu senden. Bei TCP/IP beispielsweise verwendet das ARP-Protokoll einen derartigen Mechanismus für die Auflösung der Schicht-2-Adressen.

Andererseits werden Unicast-Nachrichten (also für genau einen Empfänger) ebenso von allen angeschlossenen Computern empfangen. Die meisten Ethernet-verbundenen Geräte müssen ständig Informationen ausfiltern, die nicht für sie bestimmt sind. Dies ist eine Sicherheitslücke von Ethernet, da ein Teilnehmer mit bösen Absichten den gesamten Datenverkehr auf der Leitung mitschneiden kann, wenn er möchte. Eine häufig verwendete Abhilfe ist der Einsatz von Kryptographie (Verschlüsselung) auf höheren Protokollebenen.

In modernen, größeren Installationen werden fast ausschließlich Switches eingesetzt. Der Sicherheitsmangel wird durch die Einrichtung einer geswitchten Umgebung (wobei Switches anstatt Hubs als Zentralstücke benutzt werden) verringert, jedoch nicht behoben. Ein möglicher Angriff auf ein geswitchtes Ethernet ist das ARP-Spoofing oder MAC-Flooding.

Sicherheit des Betriebs im Sinne der störungsfreien Verfügbarkeit von Daten und Diensten beruht auf der LAN-Analyse.

[Bearbeiten] Keep-Alives

Keepalive-Nachrichten werden in Ethernet-Netzwerken verwendet, um sicherzustellen, dass eine physikalische Verbindung nicht zwischenzeitlich unterbrochen wurde. Da Ethernet ein gemeinsam genutztes Medium (engl. "shared medium") ist, wird jedoch nicht überprüft, ob eine Verbindung zu einem bestimmten Teilnehmer besteht, sondern lediglich, ob Lese- und Schreibzugriff auf das Medium (OSI-Schicht 1) möglich sind. Hierzu wird ein Datenpaket ("frame") mit der eigenen MAC-Adresse im Absender- als auch Empfänger-Feld sowie dem Wert 0x9000 im EtherType-Feld gesendet. Der unmittelbare Empfang des gerade versendeten Frames stellt sicher, dass die Ethernet-Hardware korrekt funktioniert und dass die Integrität des Übertragungsmediums sichergestellt werden kann.

In Full-Duplex-Installationen gibt es keine Keep-Alives. Höherwertige Techniken wie kontinuierliche Trägerwellen, und Auto-Negotiation sowie ausgefeilte Loopback-Funktionen der PHY-Bausteine treten an ihre Stelle.

[Bearbeiten] Verbesserungen

Ethernet in seinen frühen Ausprägungen (z.B. 10Base5, 10Base2) mit einem von mehreren Geräten gemeinsam als Übertragungsmedium genutzten Kabel (shared medium) funktioniert gut, solange das Verkehrsaufkommen relativ zur nominalen Bandbreite niedrig ist. Da die Chance für Kollisionen proportional mit der Anzahl der Sender (engl. "transmitter") und der zu sendenden Datenmenge ansteigt, tritt oberhalb von 50 % Auslastung vermehrt ein als Congestion (Verstopfung) bekanntes Phänomen auf, wobei regelrechte Staus entstehen und eine vernünftige Arbeit mit dem Netzwerk nicht mehr möglich ist. Um dies zu lösen und die verfügbare Bandbreite zu maximieren, wurde das Switched Ethernet entwickelt. Im Switched Ethernet werden Hubs durch Switching Hubs (Switch) ersetzt. Dadurch wird die Kommunikation im Full-Duplex-Modus möglich, d. h. Daten können gleichzeitig gesendet und empfangen werden. Außerdem wird die Collision Domain in mehrere kleinere Collision Domains (meist eine pro Peer) zerteilt, was die Anzahl an Kollisionen reduziert bzw. Kollisionen gänzlich vermeidet.

[Bearbeiten] Formate der Ethernet-Datenübertragungsblöcke und das Typfeld

[Bearbeiten] Historische Formate

Es gibt vier Typen von Ethernet-Datenblöcken (engl. ethernet frames):

  • Ethernet Version I (nicht mehr benutzt, Definition 1980 durch Konsortium DEC, Intel, Xerox)
  • Der Ethernet Version 2 oder Ethernet-II-Datenblock (engl. ethernet II frame), der sogenannte DIX-Frame (Definition 1982 durch das Konsortium DEC, Intel und Xerox).

Seit 1983 ist der Standard IEEE 802.3 entstanden. Ethernet ist quasi ein Synonym für diesen Standard. IEEE 802.3 definiert zwei Frame-Formate:

  • IEEE 802.3 3.1.a Basic MAC frame
  • IEEE 802.3 3.1.b Tagged MAC frame

Der ursprüngliche Xerox Version 1 Ethernet-Datenblock hatte ein 16-bit-Feld, in dem die Länge des Datenblocks hinterlegt war. Da diese Länge für die Übertragung der Frames nicht wichtig ist, wurde es vom späteren Ethernet II Standard als Ethertype-Feld verwendet. Das Format von Ethernet I mit dem Längenfeld ist jetzt Teil des Standards 802.3.

Das Ethernet II Format verwendet die Bytes 13 und 14 im Rahmen als Ethertype. Auf ein Längenfeld wie im Ethernet I Rahmen wird verzichtet. Die Länge eines Frames wird nicht durch einen Zahlenwert, sondern durch die bitgenaue Signalisierung des Übertragungsendes übermittelt. Die Länge des Datenfeldes bleibt wie bei Ethernet I auf 1500 Bytes beschränkt. Auch das Ethernet II Format ist jetzt Teil des Standards 802.3, nur die Ethertypen mit Zahlenwerten kleiner als 1500 sind weggefallen, weil jetzt die Zahlenwerte kleinergleich 1500 in diesem Feld als Länge interpretiert werden und gegen die tatsächliche Länge geprüft werden.

IEEE 802.3 definiert das 16-bit-Feld nach den MAC-Adressen als Type/Length-Feld. Mit der Konvention, dass Werte zwischen 0 und 1.500 auf das originale Ethernet-Format hindeuteten, und höhere Werte den EtherType angeben, wurde die Koexistenz der Standards auf demselben physikalischen Medium ermöglicht. Die zulässigen Werte für Ethertype werden von IEEE administriert. Diese Verwaltung beschränkt sich auf die Vergabe neuer Ethertype Werte. IEEE nimmt bei der Neuvergabe Rücksicht auf bereits für Ethernet II vergebene Ethertype Werte, dokumentiert diese aber nicht. So kommt es, dass zum Beispiel der Wert 0x0800 für IP-Daten in der IEEE-Dokumentation der Ethertype-Werte fehlt! Ethertype beschreibt das Format bzw. das Protokoll zur Interpretation des Datenblocks. Das LLC-Feld und ein eventuelles SNAP-Feld sind bereits Teil des MAC-Frame-Datenfeldes. Im Tagged-MAC-Frame werden 4 Bytes mit dem QTAG-Präfix nach der Quell-Macadresse eingeschoben. Dieses Feld wird durch den Standard 802.1Q definiert und ermöglicht bis zu 4096 virtuelle lokale Netzwerke (VLANs) auf einem physikalischen Medium. Die erlaubte Gesamtlänge des Mac-Frames wird auf 1522 Bytes verlängert, die Länge des Datenfeldes bleibt auf 1500 Bytes festgelegt.

[Bearbeiten] IEEE 802.3 Tagged MAC Frame

[Bearbeiten] Datenframe

Das heute fast ausschließlich verwendete Ethernet-Datenblockformat Ethernet-II nach IEEE 802.3 mit 802.1Q VLAN-Tag)
Das heute fast ausschließlich verwendete Ethernet-Datenblockformat Ethernet-II nach IEEE 802.3 mit 802.1Q VLAN-Tag)

[Bearbeiten] Der Aufbau

Ethernet überträgt die Bits seriell grundsätzlich beginnend mit dem untersten Bit eines Bytes. Das bedeutet, dass das Byte 0xD5 als Bitsequenz (links nach rechts) "10101011" auf die Reise geht. Bytes eines breiteren Feldes werden mit dem höchstwertigen Byte voran übertragen, was beispielsweise beim Typ-Feld (Ethertype) deutlich wird.

Eine Abweichung betrifft die FCS (Frame Check Sequence, CRC): Da sämtliche übertragenen Bits durch den CRC-Generator vom LSB zum MSB geschoben werden, muss das höchstwertige Bit des höchstwertigen Bytes der CRC an vorderster Stelle übertragen werden. Ein errechneter CRC-Wert von 0x8844CC22 wird somit als 0x11 0x22 0x33 0x44 an die übertragenen Datenbytes angehängt und als FCS-Prüfsumme übertragen.

Die Präambel und SFD

Die Präambel besteht aus einer 7 Byte langen, alternierenden Bitfolge (101010...1010), an sie schließt sich der Start Frame Delimiter (SFD) mit der Bitfolge (10101011) an. Diese Sequenz diente einst der Bit-Synchronisation der Netzwerkgeräte. Sie war für all jene Geräteverbindungen notwendig, die die Bit-Synchronisation nicht durch die Übertragung eines kontinuierlichen Datenflusses auch in Ruhezeiten aufrecht erhalten konnten, sondern diese mit jedem gesendeten Frame wieder neu aufbauen mussten. Das alternierende Bitmuster erlaubte jedem Empfänger eine korrekte Synchronisation auf die Bit-Abstände. Da bei einer Weiterleitung über Hubs jeweils ein gewisserer Teil der Präambel verloren ging, musste sie in der Spezifikation groß genug gewählt werden, dass bei maximaler Ausdehnung des Netzwerkes für den Empfänger noch eine minimale Einschwingphase übrig blieb.

Die Bus-Netzwerkarchitekturen, die auf derartige Einschwingvorgänge angewiesen sind, werden heute kaum mehr verwendet, wodurch sich die Präambel, genauso wie das Zugriffsmuster CSMA/CD, die minimale und maximale Frame-Länge und der minimale Paketabstand (IPG) nur aus Kompatibilitätsgründen in der Spezifikation befinden. Genau genommen sind Präambel und SFD Paketelemente, die auf einer Ebene unterhalb des Frames und damit auch des MACs definiert gehörten, damit ihre Verwendung vom konkreten physikalischen Medium abhingen. Moderne drahtgebundene Netzwerkarchitekturen sind stern- oder ringförmig und verwenden dauerhaft eingeschwungene (synchrone) Punkt-zu-Punkt-Verbindungen zwischen Endteilnehmern und Netzwerkverteilern (Switches), die Paketgrenzen in anderer Form signalisieren und daher Präambel und SFD unnötig machen.

Ziel- und Quell-MAC-Adresse

Die Zieladresse identifiziert den Zielrechner, der die Daten empfangen soll. Diese Adresse kann auch eine Multicast- / Broadcast-Adresse sein. Die Quelladresse identifiziert den Sender. Jede MAC-Adresse der beiden Felder hat eine Länge von sechs Bytes.

Zwei Bit der MAC-Adresse werden zu ihrer Klassifizierung verwendet. Das erste übertragene Bit und damit Bit 0 des ersten Bytes entscheidet, ob es sich um eine Unicast- (0) oder Broadcast-/Multicast-Adresse (1) handelt. Das zweite übertragene Bit und damit Bit 1 des ersten Bytes entscheidet, ob die restlichen 46 Bit der MAC-Adresse global (0) oder lokal (1) administriert werden. Gekaufte Netzwerkkarten haben eine weltweit eindeutige MAC-Adresse, die global von einem Konsortium und der Herstellerfirma verwaltet wird. Man kann aber jederzeit individuelle MAC-Adressen wählen, für die man für das Bit 1 den Wert (1) einsetzt.

VLAN-Tag

Nur im Tagged-MAC-Frame folgen zusätzlich vier Bytes als VLAN-Tag. Die ersten beiden enthalten die Konstante 0x8100 (=802.1qTagType) die einen Tagged-MAC-Frame als solchen kenntlich machen. Von der Position her würde hier im Basic-MAC-Frame das Feld Ethertype stehen. Den Wert 0x8100 kann man damit auch als Ethertype für VLAN-Daten ansehen. In den nächsten beiden Bytes stehen dann drei Bitwerte für die Vlan-Priority, 1 Bit Canonical Format Indicator und 12 Bits für die Vlan-ID. Dahinter kommt dann das ursprünglich an der Position des VLAN-Tags stehende Typ-Feld des eigentlichen Frames mit einem Wert ungleich 0x8100 (im Bild beispielsweise 0x0800 für ein IPv4-Paket).

Das Typ-Feld

Gibt Auskunft über das verwendete Protokoll der nächsthöheren Schicht innerhalb der Nutzdaten. Die Werte sind immer größer als 0x0600 (ansonsten ist das ein Ethernet-I-frame mit Längenfeld in dieser Position). Der spezielle Wert 0x8100 zur Kennzeichnung eines VLAN-Tags ist im Wertevorrat von Type reserviert. Ist ein VLAN-Tag vorhanden, darf das daran anschließende Typ-Feld nicht 0x8100 sein.

Werte im Typfeld (EtherType) für einige wichtige Protokolle
Typfeld Protokoll
0x0800 IP Internet Protocol (IPv4)
0x0806 Address Resolution Protocol (ARP)
0x8035 Reverse Address Resolution Protocol (RARP)
0x809B Appletalk (Ethertalk)
0x80F3 Appletalk Address Resolution Protocol (AARP)
0x8100 VLAN Tag (VLAN)
0x8137 Novell IPX (alt)
0x8138 Novell
0x86DD Internet Protocol, Version 6 (IPv6)

In Ethernet 802.3 Frames kann zur Kompatibilität mit Ethernet I an Stelle des Typfeldes die Länge des Dateninhalts im DATA-Teil angegeben (Längenfeld) sein. Da das Datenfeld in keinem Ethernet Frame länger als 1500 Bytes sein darf, können die Werte über 1500 als Protokolltypen (Ethertype) verwendet werden.

Die Nutzdaten

Die Nutzdaten können pro Datenblock zwischen 0 und 1500 Bytes lang sein. Sie sind die eigentlichen Informationen, die übertragen werden sollen. Die Nutzdaten werden von dem unter Type angegebenen Protokoll interpretiert.

Das PAD-Feld

Wird verwendet, um den Ethernet-Frame auf die erforderliche Minimalgröße von 64 Byte zu bringen. Dies ist bei alten Übertragungsverfahren wichtig, um Kollisionen in der sogenannten Collision-Domain sicher zu erkennen. Präambel und SFD (8 Bytes) werden bei der erforderlichen Mindestlänge des Frames nicht mitgezählt, wohl aber ein VLAN-Tag. Ein PAD-Feld wird somit erforderlich, wenn als Nutzdaten weniger als 46 bzw. 42 Bytes (ohne bzw. mit 802.1Q-VLAN-Tag) zu übertragen sind. Das in Type angegebene Protokoll muss dafür sorgen, dass diese als Pad angefügten Bytes nicht interpretiert werden.

FCS (Frame Check Sequence)

Das FCS Feld stellt eine 32-Bit-CRC-Prüfsumme dar. Die FCS wird über den eigentlichen Frame berechnet, also beginnend mit der Ziel-MAC-Adresse und endend mit dem PAD-Feld. Die Präambel, der SFD und die FCS selbst sind nicht in der FCS enthalten. Wenn ein Paket beim Sender erstellt wird, wird eine CRC-Berechnung über die Bitfolge durchgeführt und die Prüfsumme an den Datenblock angehängt. Der Empfänger führt nach dem Empfang die gleiche Berechnung aus. Stimmt die empfangene nicht mit der selbst berechneten Prüfsumme überein, geht der Empfänger von einer fehlerhaften Übertragung aus, und der Datenblock wird verworfen. Zur Berechnung der CRC-32-Prüfsumme werden die ersten 32 Bits der Mac-Adresse invertiert und das Ergebnis ebenfalls invertiert (Vermeidung des Nullproblems).

Die FCS wird, anders als die Datenbits, mit dem höchstwertigen Bit voran übertragen, womit der Empfänger seine CRC-Prüfung auch über das PAD-Feld hinaus auf die FCS anwenden kann. Ist die Prüfsumme nach Verwendung der FCS ungleich Null, war die Übertragung fehlerhaft.

[Bearbeiten] Umwandlung in einen Datenstrom

Die Bytes ab der MAC-Adresse bis zum Ende der Nutzdaten werden mit dem niedrigstwertigen Bit zuerst übertragen (Little-Endian), mehrere Bytes eines breiteren Datenwortes (z.B. MAC-Adressen, Typ-Feld, FCS-Prüfsumme) jedoch mit dem höchstwertigen Byte voran (Big-Endian). Die CRC wird dagegen mit dem höchstwertigen Bit zuerst übertragen. Abhängig vom physikalischen Medium und der Übertragungsgeschwindigkeit werden danach ein oder mehrere Bits in einen Leitungscode kodiert, um einerseits die physikalischen Eigenschaften des Mediums zu berücksichtigen und andererseits dem Empfänger eine Taktrückgewinnung zu ermöglichen. So wird, je nach Code, die erlaubte Frequenz-Bandbreite nach unten (Gleichspannungsfreiheit) und oben limitiert.

[Bearbeiten] Ethernet-Medientypen

Die verschiedenen Ethernet-Varianten unterscheiden sich in Geschwindigkeit, den verwendeten Kabeltypen und der Leitungscodierung. Der Protokollstack arbeitet deshalb bei den meisten der folgenden Typen identisch.

Die folgenden Abschnitte geben einen kurzen Überblick über alle offiziellen Ethernet-Medientypen. Zusätzlich zu diesen offiziellen Standards haben viele Hersteller proprietäre Medientypen entwickelt, häufig, um mit Glasfaserkabeln höhere Reichweiten zu erzielen.

[Bearbeiten] Einige frühe Varianten von Ethernet

  • Xerox Ethernet (Alto Aloha System) – Der Name entstand dadurch, dass das Konzept auf XEROX PARCs ALTO Computern getestet wurde. Die ursprüngliche Ethernet-Implementation, die während ihrer Entwicklung zwei Versionen hatte. Das Datenblock-Format der Version 2 wird noch immer überwiegend benutzt.
  • 10Broad36 (IEEE 802.3 Clause 11) – Obsolet. Ein früher Standard, der Ethernet über größere Entfernungen unterstützte. Es benutzte Breitband-Modulationstechniken ähnlich denen von Kabelmodems und arbeitete mit Koaxialkabel.
  • 1Base5 (IEEE 802.3 Clause 12) – Ein früher Versuch, eine günstige LAN-Lösung zu standardisieren. Arbeitete bei 1 Mbit/s und war ein kommerzieller Fehlschlag.
  • StarLAN 1 – Die erste Ethernet-Implementation über Twisted-Pair-Kabel, entwickelt von AT&T.

[Bearbeiten] 10 Mbit/s Ethernet

Beim 10-MBit-Ethernet kommt eine einfache Manchesterkodierung zum Einsatz, die je Datenbit zwei Leitungsbits überträgt (somit 20 MBaud). Mit dieser Verdopplung der Signalisierungsrate und dabei alternierend übertragenen Datenbits wird die Gleichspannung effektiv unterdrückt und gleichzeitig die Taktrückgewinnung im Empfänger nachgeführt. Die Leitung wird nur belegt, wenn ein Ethernet-Paket tatsächlich gesendet werden muss.

Verbindung über Koaxialkabel
T-Stücke und Abschlusswiderstände für 10Base2
T-Stücke und Abschlusswiderstände für 10Base2
EAD-Kabel für 10Base2
EAD-Kabel für 10Base2
  • 10Base2, IEEE 802.3a (IEEE 802.3 Clause 10), (bekannt als Thin Wire Ethernet, Thinnet oder Cheapernet) – Koaxialkabel (RG58) mit einem Wellenwiderstand von 50 Ohm verbindet die Teilnehmer miteinander, jeder benutzt ein BNC-T-Stück zur Anbindung seiner Netzwerkkarte. An den beiden Leitungsenden sitzen Abschlusswiderstände. Ein Segment (das sind alle durch die BNC-T-Stücke miteinander verbundenen Koaxialkabelstücke) darf maximal 185 Meter lang sein; es dürfen maximal 30 Teilnehmer angeschlossen werden; zwischen zwei Teilnehmern müssen mindestens 0,5 Meter Abstand bestehen; die Transceiver sind in der NIC (Network Interface Card) integriert; der Abstand vom T-Stück bis zur Netzwerkkarte darf nur wenige Zentimeter betragen; mittels Repeater können bis zu vier weitere Netzwerksegmente angeschlossen werden. Damit ist eine maximale Gesamtlänge von 925m erreichbar. Es wurden auch EAD-Dosen verwendet. Bei 10Base2 fällt das ganze Netzwerksegment aus, wenn an einer Stelle das Kabel oder eine Steckverbindung defekt ist. Besonders anfällig sind manuell konfektionierte Koaxialkabel, wenn bei ihnen der BNC-Stecker nicht korrekt befestigt wurde.
Thick Ethernet Transceiver
Thick Ethernet Transceiver

Für viele Jahre war dies der dominierende Ethernet-Standard für 10 Mbit/s.

  • 10Base5, IEEE 802.3 Clause 8, (auch Thicknet oder Yellow Cable) – ein früher IEEE-Standard, der ein 10 mm dickes Koaxialkabel (RG8) mit einem Wellenwiderstand von 50 Ohm verwendet. Zum Anschluss von Geräten muss mittels einer Bohrschablone ein Loch an einer markierten Stelle in das Kabel gebohrt werden, durch das ein Kontakt einer Spezialklemme (Vampirklemme) des Transceivers eingeführt und festgeklammert wird. An diesen Transceiver wird mittels der AUI-Schnittstelle über ein Verbindungskabel die Netzwerkkarte des Computers angeschlossen. Dieser Standard bietet 10 Mbit/s Datenrate bei Übertragung im Base-Band und 500 m Reichweite mit maximal 100 Teilnehmern. Die Leitung hat keine Abzweigungen, und an den Enden sitzen 50 Ohm Abschlusswiderstände. Dieser Typ ist eigentlich obsolet, aber aufgrund seiner weiten Verbreitung in den frühen Tagen noch immer in einigen Systemen in Benutzung.

[Bearbeiten] 10 Mbit/s Ethernet mit Twisted-Pair-Kabel

8P8C-Modularstecker und -buchse (rechte Buchse)
8P8C-Modularstecker und -buchse (rechte Buchse)
  • StarLAN 10 – Die erste Ethernet-Implementation über Twisted-Pair-Kabel mit 10 Mbit/s, ebenfalls von AT&T. Wurde später zu 10Base-T weiterentwickelt.
  • 10Base-T, IEEE 802.3i (IEEE 802.3 Clause 14), – läuft über vier Adern (zwei verdrillte Paare) eines CAT-3 oder CAT-5-Kabels. Ein Hub oder Switch sitzt in der Mitte und hat für jeden Teilnehmer einen Port. Die Übertragungsgeschwindigkeit ist 10 MBit/s und die maximale Länge eines Segments 100 Meter. Diese Konfiguration wird auch für 100Base-T benutzt. Physikalisch sind die Steckverbindungen als 8P8C-Modularstecker und -buchsen ausgeführt, die häufig auch falsch als „RJ-45“- bzw. „RJ45“-Stecker/-Buchsen bezeichnet werden. Da normalerweise keine ausgekreuzten Kabel zum Einsatz kommen, sind die Stecker von Computer und Uplink (Hub, Switch) gegengleich belegt. Beim Computer gilt folgende Belegung: Pin1 – Transmit+; Pin2 – Transmit−; Pin3 – Receive+; Pin6 – Receive−.

[Bearbeiten] 10 Mbit/s Ethernet mit Glasfaser-Kabeln

  • FOIRL – Fiber-optic inter-repeater link. Der ursprüngliche Standard für Ethernet über Glasfaserkabel.
  • 10Base-F, IEEE 802.3j (IEEE 802.3 Clause 15), – Allgemeiner Ausdruck für die neue Familie von 10 Mbit/s Ethernet-Standards: 10Base-FL, 10Base-FB und 10Base-FP. Der einzig weiter verbreitete davon ist 10Base-FL.
  • 10Base-FL (IEEE 802.3 Clause 18) – Eine revidierte Version des FOIRL-Standards.
  • 10Base-FB (IEEE 802.3 Clause 17) – Gedacht für Backbones, die mehrere Hubs oder Switches verbinden. Ist inzwischen technisch überholt.
  • 10Base-FP (IEE 802.3 Clause 16) – Ein passives sternförmiges Netzwerk, das keinen Repeater brauchte. Es gibt keine Implementationen.
  • 10Base-SX – 10/100 Mbit/s Ethernet über Glasfaser.

[Bearbeiten] 100 MBit/s Ethernet (Fast Ethernet)

Beim Übergang von 10- auf 100-MBit-Ethernet wurde die Signalisierungsebene weiter unterteilt, um auf eine klarere Definition dessen zu kommen, was den PHY, (die physikalische Schicht, OSI-Schicht 1), vom MAC trennt. Gab es bei 10-MBit-Ethernet PLS (Physical Layer Signaling, Manchester-Codierung, identisch für alle 10 MBit/s-Standards) und PMA (Physical Medium Attachment, Coaxial-, Twisted-Pair- und optische Anbindungen), sind es bei Fast Ethernet nunmehr PCS (Physical Coding Sublayer) mit PMA sowie PMD (Physical Medium Dependent). PCS, PMA und PMD bilden nunmehr gemeinsam die physikalische Schicht. Es wurden drei verschiedene PCS-PMA-Kombinationen entworfen, von denen jene für 100Base-T4 und 100Base-T2 (IEEE 802.3 Clauses 23 und 32) aber nie wirtschaftliche Bedeutung erlangen konnten.

Durchgesetzt hat sich einzig 100Base-X (IEEE 802.3 Clause 24) für Twisted-Pair-Kabel und Glasfasern, welches statt der Manchesterkodierung den effizienteren 4B5B-Code einsetzt. Dieser ist zwar nicht gleichspannungsfrei, die Symbolrate liegt aber mit 125 MBaud nur geringfügig höher als die Datenrate. Da es hier keine physikalischen Busse sondern nur mehr Punkt-zu-Punkt-Verbindungen gibt, wurde eine kontinuierliche Übertragung favorisiert, die die aufwändigen Einschwingvorgänge des Empfängers auf die Hochfahrphase des Segments beschränkt. Ein Scrambling-Verfahren sorgt für ein (statistisch) gleichmäßiges Frequenzspektrum unabhängig von der Leitungsauslastung. Die verwendeten Leitungscodeworte garantieren eine für die Bitsynchronisation beim Empfänger ausreichende minimale Häufigkeit von Leitungszustandswechseln.

  • 100Base-T – Allgemeine Bezeichnung für die drei 100-Mbit⁄s-Ethernetstandards über Twisted-Pair-Kabel: 100Base-TX, 100Base-T4 und 100Base-T2. Die maximale Länge eines Segments beträgt wie bei 10Base-T 100 Meter. Die Steckverbindungen sind als 8P8C-Modularstecker und -buchsen ausgeführt und werden häufig falsch mit „RJ-45“ bzw. „RJ45“ bezeichnet.
  • 100Base-T4 – 100 Mbit⁄s Ethernet über Category-3-Kabel (wie es in 10Base-T-Installationen genutzt wird). Nutzt alle vier Adernpaare des Kabels. Es ist inzwischen obsolet, da Category-5-Verkabelung heute die Norm darstellt. Es ist darüber hinaus auf Halbduplex-Übertragung begrenzt.
  • 100Base-T2 – Es existieren keine Produkte, die grundsätzliche Technologie lebt aber in 1000Base-T weiter und ist dort sehr erfolgreich. Bietet 100 Mbit⁄s Datenrate über Cat 3-Kabel. Unterstützt den Full-Duplex-Modus und benutzt nur zwei Paare. Es ist damit funktionell äquivalent zu 100Base-TX, unterstützt aber ältere Kabelinstallationen.
  • 100Base-TX, IEEE 802.3u (IEEE 802.3 Clause 25), – Benutzt wie 10Base-T je ein verdrilltes Adernpaar pro Richtung, benötigt allerdings mindestens ungeschirmte Cat-5-Kabel. Auf dem 100 Mbit⁄s-Markt ist 100Base-TX heute die Standard-Ethernet-Implementation. 100Base-TX verwendet zur Bandbreitenhalbierung auf PMD-Ebene die Kodierung MLT-3. Dabei werden nicht nur zwei Zustände (positive oder negative Differenzspannung) auf dem Adernpaar unterschieden, es kommt ein dritter Zustand (keine Differenzspannung) dazu (ternärer Code).

Während der 4B5B-Code ausreichend viele Signalwechsel für die Bitsynchronisation beim Empfänger garantiert, kann MLT-3 zur benötigten Gleichspannungsfreiheit nichts beitragen. Als "Killer Packets" bekannte Übertragungsmuster können dabei das Scrambling kompensieren und dem Übertragungsmuster eine signifikante Gleichspannung überlagern (baseline wander), die die präzise Abtastung unmöglich macht und zu einem Verbindungsabbruch der Endgeräte führt. Um gegen solche Angriffe immun zu sein, implementieren die PHY-Bausteine der Netzwerkkarten daher eine Gleichspannungskompensation.

100Base-FX (IEEE 802.3 Clause 26) – 100 Mbit⁄s Ethernet über Multimode-Glasfaser. Maximale Segmentlänge: 400 Meter, mit Repeatern: 2000m. Der gescrambelte 4B5B-Datenstrom wird direkt über einen optischen Lichtmodulator gesendet und in gleicher Weise empfangen.

[Bearbeiten] Gigabit Ethernet

Bei 1000-MBit-Ethernet (Gigabit Ethernet) kommen im wesentlichen zwei verschiedene Kodiervarianten zum Einsatz. Bei 1000Base-X (IEEE 802.3 Clause 36) wird der Datenstrom in 8-Bit breite Einheiten zerlegt und mit dem 8B10B-Code auf eine Symbolrate von 1250 MBaud gebracht. Damit wird ein kontinuierlicher, gleichspannungsfreier Datenstrom erzeugt, der bei 1000Base-CX über einen Transformator auf einem verdrillten Adernpaar zum Empfänger fließt oder bei 1000Base-SX/LX/ZX die optische Trägerwelle moduliert. Bei 1000Base-T hingegen wird der Datenstrom in 4 Teilströme unterteilt, die jeweils mit PAM-5 und Trellis-Codierung in ihrer Bandbreite geformt und über die 4 Adernpaare gleichzeitig gesendet und empfangen werden.

  • 1000Base-T, IEEE 802.3ab (IEEE 802.3 Clause 40) – 1 Gbit⁄s über Kupferkabel ab Cat-5 UTP-Kabel (Besser Cat5e). Die maximale Länge eines Segments beträgt wie bei 10/100Base-T 100 Meter. Wichtige Merkmale des Verfahrens sind:

Im Grundprinzip ist 1000Base-T eine "hochskalierte" Variante des seinerzeit erfolglosen 100Base-T2, nur dass es doppelt so viele Adernpaare (nämlich alle vier Paare einer typischen Cat5-Installation) verwendet und die gegenüber Cat3 größere verfügbare Bandbreite eines Cat5-Kabels ausnützt.

  • 1000Base-TX, 1000Base-T2/4 (nicht in IEEE 802.3 standardisiert) - Erfolglose Versuche verschiedener Interessensgruppen, die aufwändigen Modulier/Demodulier- und Echokompensationsschaltungen von 1000Base-T durch eine höhere Signalisierungsrate auszugleichen. Statt Klasse-D-Verkabelung bei 1000Base-T benötigen diese Übertragungsverfahren im Gegenzug Installationen nach Klasse E und Klasse F. Das Hauptargument für die Entstehung dieser Übertragungsverfahren, die hohen Kosten für Netzwerkanschlüsse mit 1000Base-T-Unterstützung, ist längst entkräftet.
  • 1000Base-SX, 1000Base-LX, IEEE 802.3z (IEEE 802.3 Clause 38) – 1 Gbit⁄s über Glasfaser. Die beiden Standards unterscheiden sich prinzipiell nur in der verwendeten Wellenlänge des optischen Infrarot-Lasers: 1000Base-SX verwendet kurzwelliges Licht mit 850 nm Wellenlänge, bei 1000Base-LX strahlen die Laser langwelliges Licht mit 1350 nm Wellenlänge aus. Die Länge eines Glasfaserkabels muss mindestens 2 Meter betragen, die maximale Ausbreitung hängt von der Charakteristik der verwendeten Glasfaser ab. Multimode-Glasfaserkabel können je nach Faserquerschnitt und modaler Dämpfung zwischen 200 und 550 Meter erreichen, während Singlemode-Glasfaserkabel bis 5000 Meter spezifiziert sind. Allerdings lassen sich Singlemode-Glasfaserkabel nur mit 1000Base-LX verwenden.

Für die meisten Menschen ist das Licht des kurzwelligen 1000Base-SX-Lasers gerade noch als rotes Licht wahrnehmbar, ein direkter Blick in die Lichtquelle ist wie bei fast allen Laservarianten für die Augen schädlich.

  • 1000Base-LX/LH, Zum Einsatz kommen hierbei Singlemode-Glasfaserkabel mit einer maximalen Länge von 10 km. Das verwendete Licht hat eine Wellenlänge von 1350  nm. Die restlichen Eigenschaften gleichen denen von 1000Base-LX.
  • 1000Base-ZX, Zum Einsatz kommen Singlemode-Glasfaserkabel mit einer maximalen Länge von 70 km.
  • 1000Base-CX (IEEE 802.3 Clause 39). Als Übertragungsmedium werden zwei Adernpaare eines Shielded-Twisted-Pair-Kabels (STP) mit einer maximalen Kabellänge von 25 m und einer Impedanz von 150 Ohm eingesetzt. Der Anschluss erfolgt über 8P8C-Modularstecker/-buchsen (häufig falsch als „RJ45"/"RJ-45“ bezeichnet) in einer Sterntopologie.

Im Vergleich zu 1000Base-T werden bei 1000Base-CX deutlich höhere Anforderungen an das Kabel gestellt. So ist etwa die verwendete Bandbreite um den Faktor 10 höher (625 MHz gegenüber 62,5 MHz). Die Komponenten sind außerdem zueinander nicht kompatibel.

[Bearbeiten] 10 Gigabit/s Ethernet

Der 10-Gigabit/s Ethernet-Standard bringt acht unterschiedliche Medientypen, sieben Glasfaser- und einen Kupfermedientyp, für LAN, MAN und WAN mit sich. Der Standard für die Glasfaserübertragung heißt IEEE 802.3ae, der Standard für Kupfer ist IEEE 802.3ak und IEEE 802.3an.

  • 10GBase-LX4 – nutzt Wellenlängenmultiplexierung, um Reichweiten zwischen 240 und 300 m über vorhandene Multimode-Fasern zu ermöglichen. 10GBase-LW4 unterstützt außerdem 10 km über Single-Mode-Fasern.
  • 10GBase-SR – entwickelt, um kurze Strecken mit vorhandenen Multimode-Fasern zu überbrücken. Hat abhängig vom Kabeltyp eine Reichweite zwischen 26 m und 82 m. Außerdem unterstützt es 300 m Reichweite über eine neue 2000 MHz*km (Bandbreiten-Längen-Produkt) Multimode-Faser.
  • 10GBase-LR und 10GBase-ER – diese Standards ermöglichen 10 km bzw. 40 km über Single-Mode-Fasern.
  • 10GBase-SW, 10GBase-LW und 10GBase-EW – Diese Varianten benutzen einen zusätzlichen WAN Phy, um mit OC-192 / STM-64 SONET/SDH-Equipment zusammenarbeiten zu können. Der Physical Layer entspricht 10GBase-SR bzw. 10GBase-LR und 10GBase-ER, sie benutzen daher auch die gleichen Fasertypen und erreichen die gleichen Reichweiten (zu 10GBase-LX4 gibt es keine entsprechende Variante mit WAN Phy).
  • 10GBase-CX4, beschreibt die Möglichkeit einer 10-Gigabit/s-Übertragung über doppelt-twinaxiale Kupferkabel auf einer maximalen Länge von 15 m.
  • 10GBase-T, beschreibt die Möglichkeit einer 10-Gigabit/s-Übertragung über vier Paare aus verdrillten Doppeladern. Die dafür verwendete strukturierte Verkabelung wird im Standard TIA/EIA 568 beschrieben. Bezüglich der kupferleitungsbasierenden Standards herrschen derzeit (2006?) noch geteilte Meinungen am Markt. Während der eine Teil von der Notwendigkeit eines neuen Kabelstandards wie CAT6a oder CAT6e spricht, sind 10 GBit/s Ethernet bereits über die derzeit üblichen Cat6-Kabel realisiert worden (z.B.: von Belden IBDN USA, von Krone ADC USA und von Reichle & De-Massari CH).

Bei der Übertragung von 10 Gbit/s über Kupferleitungen werden wie schon zuvor bei 1000Base-T alle 4 Paare für die gleichzeitige Übertragung in beiden Richtungen verwendet. D.h. der Datenstrom wird auf vier mal 2,5 Gbit/s aufgeteilt, jeweils über ein Adernpaar übertragen, und am Ende wieder zusammengesetzt. Dies bedeutet für die Verkabelung und Anschlussmodule eine höhere Anforderung und bessere Verarbeitung, da sonst die Pufferung der Signale unmöglich wird. Der Vorteil gegenüber Glasfasersystemen liegt in der schnelleren Konfektion und der unterschiedlichen Nutzbarkeit der Verkabelung (viele Anwendungen über ein Kabel). Darüber hinaus ist die Langlebigkeit von Kupfersystemen nach wie vor höher als bei Glasfasersystemen (Ausbrennen und Verschleiss der LED/Laser) und die Kosten bei zusätzlich notwendiger (teurer) Elektronik Hardware.

10 Gigabit/s Ethernet ist noch sehr neu; welche Standards kommerziell erfolgreich sein werden, muss abgewartet werden.

[Bearbeiten] Nur mit DSP möglich

Rauschen und Störungen können durch externe Quellen oder auch im Kabel selbst erzeugt werden. Die im Kabel selbst entstehenden Störungen lassen sich zwar mittels moderner digitaler Signalverarbeitung (Digital Signal Processing – DSP) in den aktiven Komponenten unterdrücken. Und erst durch den Einsatz von DSP werden die für 10GBASE-T erforderlichen Störabstände überhaupt erreichbar.

Dabei ist der Alien NEXT-Parameter (NEXT = Near-End Crosstalk = Nah-Nebensprechen), also die Störgeräusche durch benachbarte Kabel, hier der bei weitem kritischste Faktor. Der Grund: Gerade die NEXT-Auswirkungen können mit DSP nicht kompensiert werden, sie müssen in der Verkabelung selbst unterdrückt werden.

Allerdings tritt dieses Problem nur bei ungeschirmten Systemen auf, da geschirmte Verkabelungen ausreichend gegen Alien NEXT-Effekte geschützt sind. Doch geschirmte Systeme weisen andere Nachteile auf, wie z.B. Beeinträchtigungen der Übertragungsbandbreite.

[Bearbeiten]  »WARP-Technologie« 

Eine neue Technologie für 10Gbit Ethernet, mit der bereits Leitungslängen von 100 m erreicht wurden, hat das Schweizer Unternehmen R&M (Reichle & De-Massari) auf den Markt gebracht. Sie kombiniert die Vorteile aus geschirmter und ungeschirmter Technologie in einer einzigen Lösung. Bei dieser sogenannten »WARP-Technologie« – das Kürzel steht für »WAve Reduction Patterns« – sind Kabel und Module zwar mit etwa 1 bis 2 cm langen Metallfoliensegmenten und Metallplatten geschirmt, die allerdings nicht kontaktiert sind und nicht auf Erd-Potenzial liegen, sondern durch kleine Zwischenräume voneinander getrennt sind und elektrisch völlig »in der Luft« hängen. Der besondere Vorteil dieser »schwebenden Schirmung« ist, dass sie praktisch keine Kapazitäten zur Erde aufbaut und somit – anders als herkömmliche Schirmungen – die Bandbreite der Übertragung nicht beeinträchtigt, aber trotzdem einen maßgeblichen Schutz gegen NEXT etc. bietet.

Die Kombination von solch »unterbrochener« Schirmung und symmetrischer Signalübertragung wurde in dieser »WARP-Technologie« erstmals realisiert und scheint vielversprechend: Alle Störungen, die sich auf beide Adern gemeinsam auswirken (Gleichtakt-Störungen), werden durch die Symmetrie der Signale eliminiert; es wird ausschließlich die Differenz zwischen den beiden Adern eines »Twisted Pairs« (eines verdrillten Adernpaares) ausgewertet. Und alle jene Störungen, die sich nur auf eine der beiden Adern auswirken könnten, werden durch das Verdrillen der Adern im Kabel und zum Großteil von dieser speziellen Schirmung abgefangen.

[Bearbeiten] Power over Ethernet

Ebenfalls zur Familie der Ethernet-Standards gehört IEEE 802.3af (IEEE 802.3 Clause 33). Das Verfahren beschreibt, wie sich Ethernet-fähige Geräte über das Twisted-Pair-Kabel mit Energie versorgen lassen. Dabei werden entweder die ungenutzten Adern der Leitung verwendet, oder es wird zusätzlich zum Datensignal ein Gleichstromanteil über die vier verwendeten Adern übertragen. Entsprechend ausgelegte Geräte werden mit 48 V und bis zu 15,4 Watt versorgt. Eine Logik stellt sicher, dass nur PoE-fähige Geräte mit Energie versorgt werden.

[Bearbeiten] Verwandte Standards

Folgende Netzwerk-Standards gehören nicht zum IEEE 802.3 Ethernet-Standard, unterstützen aber das Ethernet-Datenblockformat und können mit Ethernet zusammenarbeiten:

  • Wireless LAN (IEEE 802.11) – Drahtlose Vernetzung im Geschwindigkeitsbereich zwischen 1 und 108 Mbps (es existieren proprietäre, schnellere Lösungen; der Standard 802.11n mit enorm höheren Geschwindigkeiten befindet sich derzeit in der Entwurfsphase)
  • VG-AnyLan oder 100BaseVG – Ein früher Konkurrent zu 100-Mbit/s-Ethernet. Läuft über Kategorie-3-Kabel, nutzt vier Adernpaare und war ein kommerzieller Fehlschlag. Hewlett Packard brachte die damals technisch überlegene Technik mit lebenslanger Garantie auf alle Komponenten in den Handel.
  • TIA 100Base-SX – Von der Telecommunications Industry Association geförderter Standard. 100BASE-SX ist eine alternative Implementation von 100-Mbit/s-Ethernet über Glasfaser und ist inkompatibel mit dem offiziellen 100Base-FX-Standard. Eine hervorstehende Eigenschaft ist die mögliche Interoperabilität mit 10Base-FL, da es Autonegotiation zwischen 10 oder 100 Mbit/s beherrscht. Die offiziellen Standards können dies auf Grund unterschiedlicher Wellenlängen der verwendeten LEDs nicht. Zielgruppe sind Organisationen mit einer bereits installierten 10-Mbit/s-Glasfaser-Basis.
  • TIA 1000Base-TX – Stammt ebenfalls von der Telecommunications Industry Association. War ein kommerzieller Fehlschlag, und es existieren keine Produkte. 1000Base-TX benutzt ein einfacheres Protokoll als der offizielle 1000Base-T-Standard, benötigt aber Cat-6-Kabel (Böse Zungen behaupten, dieser primär von der Kabelindustrie geförderte Standard sei gar nicht zur Produktentwicklung gedacht gewesen, sondern ausschließlich dafür, um eine erste Anwendung für diese bis dahin mit keinerlei Vorteilen gegenüber Cat-5 ausgestattete Kabelklasse vorweisen zu können).
  • InfiniBand ist ein Bussystem, das eine bidirektionale Datenübertragung mit bis zu 10 Gbit/s zulässt.

[Bearbeiten] Siehe auch

[Bearbeiten] Literatur

[Bearbeiten] Weblinks

Wikipedia:Lesenswerte Artikel
Lesenswerte Artikel
Wikipedia:Lesenswerte Artikel
Lesenswerte Artikel
Dieser Artikel wurde in die Liste der Lesenswerten Artikel aufgenommen.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu