Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Korrespondenzprinzip - Wikipedia

Korrespondenzprinzip

aus Wikipedia, der freien Enzyklopädie

Der Begriff Korrespondenzprinzip wird in drei unterschiedlichen, inhaltlich zusammenhängenden Bedeutungen verwendet. Es geht dabei jeweils um die Korrespondenz zwischen

  1. verschiedenen Theorien (z.B. einer älteren und einer neueren) des selben Phänomenbereichs, und damit um das grundlegende Konzept einer Hierarchie der Theorien in den Naturwissenschaften,
  2. der elektromagnetischen Strahlung eines in der Atomhülle gebundenen Elektrons und seiner Bahn um den Atomkern und
  3. klassischen Phasenraumkoordinaten und quantenmechanischen Operatoren.

Ursprünglich wurde das Korrespondenzprinzip in der zweiten dieser Bedeutungen 1923 von Niels Bohr im Kontext der älteren Quantentheorie geprägt und wird in diesem Zusammenhang auch als Bohrsches Korrespondenzprinzip bezeichnet.

Inhaltsverzeichnis

[Bearbeiten] Das Korrespondenzprinzip als Konzept zur Theorienhierarchie

Das Korrespondenzprinzip beschreibt ein bestimmtes Verhältnis zwischen einer älteren naturwissenschaftlichen Theorie und einer neueren mit größerem Gültigkeitsbereich. Es liegt vor, wenn die neuere Theorie auf dem Gültigkeitsbereich der älteren zu den selben Ergebnissen kommt wie diese. Diese Art der Theorienentwicklung ist in den Naturwissenschaften typisch.

Die neuere Theorie enthält in diesem Fall die ältere als Grenzfall und erklärt so ihren früheren Erfolg. Ferner gerät die neue Theorie nicht in Konflikt mit den älteren experimentellen Befunden. Dabei kann sich die neuere Theorie strukturell und begrifflich komplett von der älteren unterscheiden. Die ältere Theorie ist damit zwar im Prinzip widerlegt, sie bleibt jedoch in ihrem begrenzten Gültigkeitsbereich weiterhin nützlich.

Im folgenden werden einige bedeutende Beispiele für das Korrespondenzprinzip in der Wissenschaftsgeschichte erläutert.

[Bearbeiten] Scheibentheorie und Kugeltheorie der Erde

Bevor die Kugelform der Erde entdeckt wurde, glaubte man, die Erde sei eine Scheibe. Aufgrund der enormen Größe der Erdkugel fällt uns der Unterschied zwischen Scheibe und Kugel im Alltag nicht auf. Das Versagen der Scheibentheorie wird erst bei größerem Aktionsradius offensichtlich. Damit erklärt die Kugeltheorie auch, warum die Vorstellung von einer Scheibe überhaupt entstehen konnte. Die Scheibentheorie bleibt aber weiterhin nützlich. So orientieren wir uns in einer fremden Stadt mit einem Stadtplan und nicht mit einem Globus, obwohl der Stadtplan von seinem Wesen her eben ist und damit eher der widerlegten Scheibentheorie entspricht.

[Bearbeiten] Newtonsche Physik und Relativitätstheorie

Obwohl die Relativitätstheorie völlig neue Vorstellungen von Raum und Zeit einführt, gehen ihre Vorhersagen in die der newtonschen Physik über, wenn man sie auf unseren Alltagsbereich anwendet.

In der speziellen Relativitätstheorie hängen räumliche und zeitliche Distanzen vom Bewegungszustand des Beobachters ab. Sind die entsprechenden Geschwindigkeiten hinreichend klein gegen die Lichtgeschwindigkeit, so geraten die Differenzen dieser Distanzen unter die experimentelle Nachweisgrenze, so dass die an sich überholten Konzepte von Raum und Zeit der newtonschen Physik angewendet werden können. Das Gleiche gilt für die Abhängigkeit der Masse eines Körpers von seiner Geschwindigkeit. Ebenso ist die Krümmung des Raumes durch die Anwesenheit von Massen und die Abhängigkeit des Ganges von Uhren von ihrer Position im Gravitationsfeld, wie sie in der allgemeinen Relativitätstheorie vorhergesagt werden, für hinreichend kleine Raumgebiete wie beispielsweise unserem alltäglichen Aktionsradius experimentell kaum feststellbar. Auch das Verhältnis zwischen spezieller Relativitätstheorie und allgemeiner entspricht dem Korrespondenzprinzip.

[Bearbeiten] Newtonsche Physik und Quantenphysik

Die Gesetze der newtonschen Physik lassen sich als Grenzfall aus denen der Quantenphysik herleiten, obwohl letztere auf völlig andersartigen und nicht mehr anschaulich zugänglichen Konzepten von Materie und Bewegung beruhen.

Die Quantenphysik erlaubt oft lediglich Wahrscheinlichkeitsprognosen über den Wert einer Messgröße wie beispielsweise den Ort, an dem sich ein Objekt befinden wird. Sie ist daher nicht mehr bezüglich jeder Fragestellung deterministisch. Berechnet man den so genannten Erwartungswert, das heißt den Mittelwert dieser Messgröße bei mehrfacher Wiederholung des Experiments, so stellt sich heraus, dass dieser den bekannten Gleichungen der newtonschen Physik gehorcht (Ehrenfest-Theorem). Wendet man die Regeln der Quantenphysik auf makroskopische mechanische Systeme an, so wird die statistische Streuung der Messergebnisse nahezu unmessbar klein. Dabei entsprechen solche Systeme oft einer Überlagerung einer großen Zahl von Quantenzuständen mit großen Quantenzahlen. Damit folgt der deterministische Charakter der klassischen Physik für den makroskopischen Grenzfall aus der Quantenphysik.

[Bearbeiten] Relativitätstheorie, Quantenphysik und Quantengravitation

Eins der großen Probleme des Theoriengebäudes der Physik besteht derzeit darin, dass seine beiden Säulen, die allgemeine Relativitätstheorie und die Quantenphysik, in ihrer Beziehung zueinander das Korrespondenzprinzip nicht erfüllen. Beide Theorien haben daher nur einen begrenzten Gültigkeitsbereich, so dass die heutige Physik keine abgeschlossene Beschreibung der Natur liefern kann. Es wird daher nach einer Theorie der so genannten Quantengravitation gesucht, die die Relativitätstheorie und die Quantenphysik vereinigt, indem sie beide als Grenzfall im Sinne des Korrespondenzprinzips enthält.

[Bearbeiten] Das Korrespondenzprinzip in der älteren Quantentheorie

Die ältere Quantentheorie kombiniert die klassische Mechanik quasiperiodischer Systeme mit zusätzlichen Annahmen, deren wichtigste die Einschränkung der zulässigen Bahnen im Phasenraum auf solche, für die \oint p\, dq = n\hbar\;;n=1,2,\ldots gilt, ist. Das Korrespondenzprinzip fordert nun einen Zusammenhang zwischen den Koeffizienten der Fourierentwicklung der Ortskoordinaten nach der Zeit q(t) = \sum_k D_k e^{i s_k t} und den quantentheoretisch möglichen Strahlungsübergängen, sowie der Intensität und Polarisation des dabei ausgesandten Lichts. So lassen sich u.a. die spektroskopischen Auswahlregeln ableiten, indem vom Verschwinden der n-ten Fourierkomponente auf die Unmöglichkeit des korrespondierenden Quantensprungs um n Einheiten geschlossen wird.

Eine Bedingung, die Bohr an diese Korrespondenz stellt, ist die der näherungsweisen Übereinstimmung mit der klassischen Elektrodynamik für große Quantenzahlen. In der Wissenschaftstheorie ist es diese Bedingung an das ursprüngliche Korrespondenzprinzip, die als Korrespondenzprinzip bezeichnet wird (siehe oben).

[Bearbeiten] Das Korrespondenzprinzip in der modernen Quantenmechanik

Im Anschluss an Heisenberg wird die Zuordnung klassischer Observabler zu ihren Entsprechungen in der mathematischen Formulierung der Quantenmechanik, den Operatoren auf Hilbert-Räumen als Korrespondenz bezeichnet. Damit dient die klassische Theorie in der Anwendung des Korrespondenzprinzips in dieser Bedeutung dazu, die physikalisch sinnvollen Gleichungen der Quantenmechanik zu finden - eben durch Übernahme der algebraischen Form der Gleichungen, wobei bestimmte klassische Observable durch die ihnen korrespondierenden quantenmechanischen Operatoren ersetzt werden.

[Bearbeiten] Weblinks

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu