New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
חור שחור - ויקיפדיה

חור שחור

מתוך ויקיפדיה, האנציקלופדיה החופשית

ציור של חור שחור במערכת כוכבים זוגית ה"בולע" גז מבן הזוג שלו. חור שחור כזה מתאפיין בדסקת ספיחה ושני סילונים
ציור של חור שחור במערכת כוכבים זוגית ה"בולע" גז מבן הזוג שלו. חור שחור כזה מתאפיין בדסקת ספיחה ושני סילונים

חור שחור הוא עצם בעל שדה כבידה כה חזק עד ששום גוף, לרבות אור, אינו יכול להתנתק ממנו. אם ננסה לחשב את מהירות המילוט מהחור השחור, נמצא שהיא עוברת את מהירות האור. אף על פי שהחור השחור עצמו אינו מקרין (ומכאן מגיע שמו), תהליך קוונטי המכונה קרינת הוקינג גורם לפליטת קרינה וחלקיקים מהגבול החיצוני של החור השחור, הקרוי אופק אירועים. מסתו של החור השחור גדלה כאשר גוף חוצה את אופק האירועים מבחוץ פנימה, ומאידך, מסתו קטנה בעקבות קרינת הוקינג.

כיום קיימות שתי שאלות פתוחות מפורסמות הקשורות לחורים שחורים. ידוע כי מאחורי כל אופק אירועים נמצאת סינגולריות. השאלה הראשונה היא שאלת נכונותה של השערת הצנזורה הקוסמית, לפיה כל סינגולריות מוסתרת מאיתנו על-ידי אופק אירועים. השאלה השנייה קשורה למציאת פתרון לפרדוקס המידע הנובע מכך שחורים שחורים "מתאדים" מבלי לאבד מידע.

את החורים השחורים ניתן לסווג לחמש קבוצות על-פי גודלם (מהקטן לגדול): חור שחור זעיר, חור שחור קדמון, חור שחור כוכבי, חור שחור בינוני וחור שחור על-מסיבי. כיום יש די ראיות אסטרונומיות לשלושת הסוגים האחרונים, ואילו השניים הראשונים עדיין היפותטיים. אף־על־פי־כן, מיעוט בקרב הפיזיקאים לא מסכים כי חורים שחורים קיימים.

תוכן עניינים

[עריכה] היסטוריה

קרל שוורצשילד, מפתח רעיון החורים השחורים במסגרת תורת היחסות הכללית
קרל שוורצשילד, מפתח רעיון החורים השחורים במסגרת תורת היחסות הכללית

הרעיון כי עשוי להתקיים ביקום גוף כה מסיבי עד שאפילו האור לא יוכל לברוח ממנו הועלה לראשונה על־ידי הגאולוג הבריטי ג'ון מיצ'ל, ששימש בתקופה זו ככומר, במכתב[1] ששלח בשנת 1783 לידידו הנרי קוונדיש, והלה פרסם אותו בכתבי החברה המלכותית של לונדון. באותו זמן התאוריה הניוטונית של הכבידה והמושג של מהירות מילוט היו כבר ידועים היטב, וכמו-כן מהירות האור הייתה ידועה בקירוב. מיצ'ל שהאמין גם בתאוריה נוספת של ניוטון לפיה האור עשוי מחלקיקים, הסיק ששדה הכבידה של כוכב מאט את האור שעוזב את פניו, ועפ"י חישוביו, בגוף בעל רדיוס הגדול פי 500 מזה של השמש וצפיפות השווה לזו של השמש תהיה מהירות המילוט מפני השטח גדולה ממהירות האור. אף על פי שלא ייחס לכך סבירות גבוהה, מיצ'ל הביא בחשבון את האפשרות שישנם עצמים רבים כאלה ברחבי היקום ללא ידיעתנו. הוא גם הציע דרך למצוא אותם במערכת כוכבים כפולה - שיטה שמשמשת גם כיום.

בשנת 1796 הגיע המתמטיקאי הצרפתי פייר סימון לפלס למסקנות דומות, כנראה מבלי להכיר את עבודתו של מיצ'ל, והוא פרסם את חישוביו בשתי המהדורות הראשונות של ספרו Exposition du Système du Monde. הרעיון הוזנח במהדורות הבאות. למעשה, עד שנות ה-70 של המאה ה-20 הוענקה זכות הבכורה על גילוי החורים השחורים ללפלס משום שרק אז התגלה מחדש מכתבו של מיצ'ל בין פרסומי החברה המלכותית. במאה ה־19 הרעיון זכה לתשומת לב מעטה מאוד כיוון שנהוג היה לחשוב שהאור הוא גל חסר מסה, ולפיכך הכבידה אינה משפיעה עליו. גם ההכרה בתכונות החלקיקיות של האור (פוטונים) בתחילת המאה ה-20 לא שינתה את הגישה, היות שהפוטון הוא חלקיק חסר מסה.

בשנת 1915 פיתח אלברט איינשטיין את תורת היחסות הכללית. עוד לפני כן הוא חזה שהכבידה משפיעה על מסלול האור. מספר חודשים מאוחר יותר מצא קרל שוורצשילד, על מיטת חוליו, את הפתרונות הראשונים מאז ומעולם למשוואת איינשטיין [2][3], ושלח את מאמריו לאיינשטיין. הפתרונות שלו תיארו את שדה הכבידה הנובע ממסה נקודתית ומכוכב כדורי, ותוך כדי כך הוא הראה שהגוף אותו מכנים כיום חור שחור אכן יכול להתקיים. שוורצשילד עצמו וגם איינשטיין שדאג לפרסם את מאמריו לא האמינו בקיומם של חורים שחורים ביקום, והתייחסו לחור שחור כאל מושג "לא פיזיקלי".

ב-1930, טען סוברהמניאן צ'נדראסקאר כי תורת היחסות הפרטית מדגימה למעשה שגוף מעל מסה מסוימת, הנקראת כיום גבול צ'נדראסקאר, לא יסיים את חייו כננס לבן, אלא יקרוס למה שאנו מכנים כיום כוכב נייטרונים. את טיעוניו ניסה לסתור ארתור אדינגטון, המנחה שלו בלימודי הדוקטורט, שדאג תוך כדי כך להביך אותו בפומבי. היום ידוע שצ'נדראסקאר צדק, ומוכר גם גבול נוסף (גבול טולמן-אופנהיימר-וולקוף), שגוף בעל מסה גדולה ממנו יקרוס באופן מלא, ולא יהיה דבר שיעצור את הפיכתו לחור שחור. את מנגנון הקריסה המלאה הבינו בשנת 1939 רוברט אופנהיימר והארטלנד סניידר[4]. תוצאה, שקמו לה מסתייגים רבים בזמנו, ועל אף שהיא התייחסה רק לכוכב שהוא כדור מושלם, הראתה לראשונה את מנגנון ההיווצרות של חורים שחורים. עצמים שכאלה נקראו למשך תקופה מסוימת כוכבים שעברו קריסה כבידתית מלאה או כוכבים קפואים, מכיוון שהקריסה הייתה אמורה לעצור כאשר הכוכב מצטמק ומגיע בגודלו לרדיוס שווארצשילד. עצמים אלו לא היוו מרכז התעניינות גדול במיוחד בפיזיקה התאורטית עד לשנות ה־60 המאוחרות.

העניין בכוכבים קורסים עלה שוב בשנת 1967 עם גילויים של הפולסרים, שאז עדיין לא ידעו כי אלו כוכבי נייטרונים, והיו השערות לגבי זהותם. ג'ון ארצ'יבלד וילר טבע בשנה זו את המונח "חור שחור", כאופצייה לא מקובלת לזהותם של הפולסרים, והחל להשתמש בשם זה מבלי להסביר את כוונתו. השם הקליט התפשט בקרב הפיזיקאים תוך זמן קצר ותורגם לרוב השפות. אפילו בצרפתית וברוסית, בהן הייתה לביטוי קודם לכן, משמעות מעליבה, הצירוף מוכר כיום רק במשמעותו האסטרונומית. ניתן גם להזכיר כי בינואר 1967 עת רווחו עדיין שמות אחרים לחורים שחורים, המונח כוכב שחור הופיע בפרק "מחר הוא אתמול" בעונה הראשונה של מסע בין כוכבים.

[עריכה] פיזיקה איכותנית

[עריכה] אופק האירועים

איור המתאר חור שחור ומסביבו דסקת ספיחה. המעטפת של החור השחור קרויה אופק אירועים
איור המתאר חור שחור ומסביבו דסקת ספיחה. המעטפת של החור השחור קרויה אופק אירועים

"שטח הפנים" של חור שחור נקרא "אופק אירועים". זהו משטח דמיוני המקיף את המסה של החור השחור. באופק האירועים, מהירות המילוט שווה למהירות האור, ומכיוון שכך, כל מה שנמצא בתוך אופק האירועים, ובכלל זה גם פוטונים, אינו יכול להגיע לאופק האירועים. חלקיקים הנמצאים מחוץ לאזור זה יכולים ליפול פנימה ולחצות את אופק האירועים, אך הם לעולם לא יוכלו לחזור החוצה.

מכיוון שאין חלקיקים היכולים לצאת מתוך חור שחור, אין דרך בה צופה מן החוץ יוכל לקבל מידע מחלקו הפנימי של החור השחור. לחורים שחורים אין מאפיינים חיצוניים שבהם ניתן להשתמש כדי להעריך את תוכנם. משפט האין-שיער קובע כי על פי תורת היחסות הכללית, מחוץ לאופק האירועים ניתן למדוד רק שלושה פרמטרים של חורים שחורים: מסה, תנע זוויתי ומטען חשמלי.

עצמים בשדה הכבידה יחושו האטה של הזמן. תופעה זו נבדקה בניסויים בלווינים ועל-פני כדור-הארץ [1]. קרוב לחור שחור, האטת הזמן גוברת עד לרמה גבוהה מאוד. מנקודת ראותו של צופה נייח מן החוץ, נראה שנדרש לגוף זמן אין-סופי כדי להגיע אל אופק האירועים, שממנו ואילך האור מוסט לאדום בצורה אין־סופית. לצופה מרחוק נדמה שהעצם, הנופל יותר־ויותר לאט, מתקרב אך לעולם לא מגיע לאופק האירועים (כלומר, לוקח לו זמן אין־סופי כדי להגיע אליו). מנקודת ראותו של הגוף הנופל עצמו, הזמן הנדרש כדי לחצות את אופק האירועים ולהגיע לסינגולריות יהיה סופי.

[עריכה] הסינגולריות

במרכזו של אופק האירועים נמצאת "סינגולריות", שם צופה היחסות הכללית את עיקומו האין־סופי של המרחב (כלומר, המקום בו הכבידה הופכת להיות חזקה במידה אין־סופית). המרחב-זמן בתוך אופק האירועים הינו יוצא דופן בכך שהסינגולריות היא העתיד האפשרי היחיד, כך שכל החלקיקים בתוך אופק האירועים חייבים לנוע לעברה. במילים אחרות, עצם שנמצא פנימה לאופק האירועים - נגזר גורלו לא רק להשאר בתוך החור השחור, אלא אף להגיע אל הסינגולריות עצמה, שבה הזמן עבורו ייעצר.

הרחבות או חלופות עתידיות לתורת היחסות הכללית (ובמיוחד הכבידה קוונטית) יצטרכו להתמודד עם סוגיות כדוגמת השערת הצנזורה הקוסמית ולהגדיר את אשר מתרחש בסינגולריות ובסביבתה. ישנם פיזיקאים שמפרשים את קיומה של סינגולריות מתמטית בתוך חור שחור כראייה לכך שהתאוריה הנוכחית אינה שלמה.

[עריכה] נפילה לחור שחור

נניח שאסטרונאוט נופל לעבר חור שחור מסוג שוורצשילד (חור שחור שאינו מסתובב), כשרגליו קדימה. ככל שהוא מתקרב לאופק האירועים, כך לוקח לפוטונים שהוא שולח חזרה יותר זמן לצאת משדה הכבידה. צופה מרוחק יראה את האסטרונאוט מאט ככל שהוא יתקרב לאופק האירועים, שאליו, בעיני הצופה המרוחק, האסטרונאוט לעולם לא יגיע.

ואולם, במערכת הייחוס של עצמו, יחצה האסטרונאוט את אופק האירועים ויגיע לסינגולריות, בזמן סופי. מרגע שחצה את אופק האירועים, בלתי אפשרי לצפות באסטרונאוט מן החוץ. בעת שהוא נופל, הוא ישים לב שאור המוחזר מכפות רגליו, ולאחר מכן מברכיו, מוסט לאדום. ככל שהוא יתקרב לסינגולריות, כך הפרשי הכבידה בין ראשו לרגליו (כוחות גאות ושפל) יהפכו מוחשיים יותר, והוא ימתח, ולבסוף יקרע. תהליך זה ידוע בשם ספגטיפיקציה. בקרבת הסינגולריות, הפרשי הכוחות נעשים חזקים מספיק כדי שהגוף יתפרק לאטומים, ואחר-כך אפילו לחלקיקים אלמנטריים. הנקודה בה הפרשי הכוחות הללו הופכים משמעותיים תלויה בגודלו של החור השחור. בחורים שחורים על-מסיביים, אשר נמצאים במרכזי גלקסיות, נקודה זו נמצאת הרחק בתוך אופק האירועים, כך שהאסטרונאוט עשוי לחצות את אופק האירועים ללא פגע. לעומת זאת, בחור שחור כוכבי, הפרשים אלו הופכים למשמעותיים עוד לפני ההגעה לאופק האירועים.

[עריכה] חורים שחורים מסתובבים

מבנה של חור שחור מסתובב. מסביב לאופק האירועים קיים אזור הקרוי ארגוספירה שבו גופים לא יכולים לעמוד מבלי לנוע
מבנה של חור שחור מסתובב. מסביב לאופק האירועים קיים אזור הקרוי ארגוספירה שבו גופים לא יכולים לעמוד מבלי לנוע

לפי התאוריה, אופק האירועים של חור שחור שאינו מסתובב הינו עגול, והסינגולריות שלו נקודתית. אם לחור השחור יש תנע זוויתי (הנרכש מהכוכב המקורי ממנו נוצר החור השחור), הוא מתחיל "לסחוב" איתו את המרחב-זמן הנמצא סביב אופק האירועים. חור שחור מסתובב נקרא חור שחור מטיפוס קר (Kerr). האזור המסתובב הנמצא סביב אופק האירועים נקרא בשם ארגוספירה. כיוון שהארגוספירה נמצאת מחוץ לאופק האירועים, עצמים יכולים לשרוד בה בלי ליפול לחור השחור, אולם כיוון שהמרחב-זמן נע בארגוספירה, אין אפשרות שעצמים המצויים בה יישארו במקומם.

חללית שנכנסת לתוך הארגוספירה מבחוץ מסוגלת לצאת ממנה עם אנרגיה גדולה מהאנרגיה ההתחלתית שלה, בעזרת תהליך הקרוי תהליך פנרוז. בתהליך זה החללית, בעודה נמצאת בארגוספירה, משליכה קפסולה אל עבר החור השחור, והיא עצמה בורחת אל מחוץ לארגוספירה. אמנם מסת החור השחור גדלה, אבל האנרגיה הסיבובית שלו פוחתת ומכאן המקור לעודף האנרגיה של החללית.

הבדל נוסף בין חור שחור נייח לחור שחור מסתובב הוא צורת הסינגולריות. בחור שחור מסתובב צורתה טבעת, לעומת נקודה בחור שחור נייח. כמו-כן, בחור שחור מסתובב ניתן להגדיר שני משטחים המוגדרים כאופק אירועים. בתוך אופק האירועים הפנימי אין היפוך של זמן ומרחב, ועל-כן גוף שנמצא שם לא בהכרח יגיע לסינגולריות.

[עריכה] חורים שחורים טעונים

חור שחור טעון, הקרוי גם חור שחור מטיפוס רייסנר-נורדסטרום (Reissner-Nordström) מכיל שני משטחים המוגדרים כאופק אירועים (בדומה לחור שחור מסתובב), אולם אין מסביבו ארגוספירה, והסינגולריות שלו נקודתית. חורים שחורים שהם גם טעונים וגם מסתובבים קרויים חורים שחורים מטיפוס קר-ניומן (Kerr-Newman).

[עריכה] אנטרופיה וקרינת הוקינג

בשנת 1971, הוכיח סטיבן הוקינג שהשטח הכולל של אופק האירועים של כל חור שחור קלאסי לעולם לא יכול לקטון. הדבר נשמע דומה למדי לחוק השני של התרמודינמיקה ומכיוון שכך, הציע יעקב בקנשטיין את האפשרות ולפיה האנטרופיה של החור השחור תלויה בשטח אופק האירועים. בשנת 1974, מצא הוקינג שחישובי תורת השדות הקוונטית באזור של מרחב-זמן מעוקם מאוד, כלומר בקרבת חורים שחורים, צופים פליטת קרינה תרמית, הידועה כיום בשם קרינת הוקינג. קרינה זו נפלטת מהאזור הסמוך לאופק האירועים והיא מובילה להפחתת מסת החור השחור. הניתוח של חור שחור כגוף בעל טמפרטורה הפולט קרינה אפשר לו לחשב את האנטרופיה ולמצוא את היחס בינה ובין שטח אופק האירועים, ובכך הוא אישר את השערתו של בקנשטיין. מאוחר יותר נתגלה כי חורים שחורים הם בעלי אנטרופיה מקסימלית, כלומר האנטרופיה המקסימלית לאזור בחלל היא האנטרופיה של החור השחור הגדול ביותר שהוא יכול להכיל. קביעה זו הובילה להצעת העקרון ההולוגרפי.

קרינת הוקינג מורכבת משלל החלקיקים האלמנטריים, ובגלל שהיא מכילה גם פוטונים ניתן להסיק כי חורים שחורים אינם לחלוטין שחורים. מעבר לכך, התופעה מראה שהמסה של החור השחור קטנה ככל שעובר הזמן. על־אף שתופעות אלו הינן זניחות בעצמים בקנה מידה אסטרונומי, הן נעשות משמעותיות עבור חורים שחורים זעירים, בגלל שטמפרטורת החור השחור (טמפרטורת הוקינג) גדולה יותר ככל שמסת החור השחור קטנה יותר. חורים שחורים זעירים צפויים "להתאדות", ולבסוף להיעלם בפרץ של אנרגיה. מכיוון שכך, כל חור שחור שאינו מגדיל את מסתו צפוי להיעלם תוך זמן סופי. בהקשר זה ראוי להזכיר גם את פרדוקס המידע הנובע מכך שקרינת הוקינג הנוצרת על יד אופק האירועים, אינה מכילה מידע על תוכנו של החור השחור.

[עריכה] קיום חורים שחורים

[עריכה] האם חורים שחורים קיימים?

מיקומו של מקור קרני ה-X הידוע בשם Cygnus X-1. משערים שמקור הקרינה בדסקת ספיחה סביב חור שחור כוכבי
מיקומו של מקור קרני ה-X הידוע בשם Cygnus X-1. משערים שמקור הקרינה בדסקת ספיחה סביב חור שחור כוכבי

תורת היחסות הכללית אינה רק קובעת כי חור שחור יכול להתקיים, אלא היא גם חוזה את היווצרותו, עת כוכב מסיבי, בעל מסה של 20 מסות שמש ומעלה, מסיים את הדלק הגרעיני שלו, ששימש להפקת אנרגיה בתהליך ההיתוך הגרעיני. תהליך היווצרות החור השחור נקרא קריסה כבידתית, והוא כולל פיצוץ סופרנובה שבמהלכו משיל הכוכב את רוב מסתו, וזו הופכת לערפילית פלנטרית. שארית המסה (לפחות 3 מסות שמש) קורסת לתוך תחום קטן במרחב. כאשר מסה זו מתרכזת בתוך כדור שרדיוסו קטן מרדיוס שוורצשילד המתאים לה, נוצר החור השחור. משפט מתמטי קובע שפנימה לאופק האירועים החומר חייב, בסופו של התהליך, להתרכז בנקודה אחת, וליצור סינגולריות.

קריסה שכזו צפויה, כמובן, ליצור חורים שחורים שמסתם 3 מסות שמש או יותר. חורים שחורים הקטנים מגבול זה יכולים להיווצר רק אם החומר שממנו הם עשויים ידחס עקב כוח שאינו הכבידה העצמית שלו. הלחץ העצום הנדרש לצורך זה היה קיים, ככל הנראה, רק בימיו הראשונים של היקום, ומכאן ההשערה לגבי קיומם של חורים שחורים קדמונים.

התהליך שמתאר היווצרות של חורים שחורים על-מסיביים אינו ברור די צרכו. חורים שחורים אלו, שמסתם גדולה פי מיליונים עד מיליארדים ממסת השמש, יכולים להיווצר תוך כדי קריסה כבידתית במקום בו מספר גדול של כוכבים נמצאים באזור קטן יחסית בחלל, או על ידי נפילת כמויות גדולות של חומר לתוך חור שחור קיים. אפשרות נוספת היא התמזגות של חורים שחורים קיימים. התנאים הנדרשים מתקיימים כנראה רק באזור הצפוף של מרכזי הגלקסיות.

[עריכה] האם ניתן לגלות אותם?

הסילון היוצא ממרכז הגלקסיה M87. מקורו בדסקת הספיחה של החור השחור במרכז הגלקסיה
הסילון היוצא ממרכז הגלקסיה M87. מקורו בדסקת הספיחה של החור השחור במרכז הגלקסיה

על־פי התאוריה, איננו יכולים לגלות חורים שחורים בעזרת פליטת אור (עצמתה של קרינת הוקינג חלשה מכדי להתגלות עבור חורים שחורים כוכביים). אך למרות זאת, ניתן להבחין בחורים שחורים בעזרת בחינת תופעות הנובעות מנוכחותם, כגון עידוש כבידתי או כוכבים החגים סביב אזור בו אין חומר נראה.

במערכת כוכבים כפולה שאחד ממרכיביה הוא חור שחור, ייתכן כי חומר מבן-הזוג יילכד בשדה הכבידה של החור השחור, ינוע לעברו, ויאסף בדסקת ספיחה (accretion disk) לוהטת המסתחררת במהירות אדירה סביב החור השחור. התנגשויות בין אטומי הגז בדסקת הספיחה גורמות לגז לאבד אנרגיה ולנוע במסלול לולייני אל עבר החור השחור עצמו. תוך כדי כך הגז מתלהט לטמפרטורות של מיליוני מעלות צלזיוס, שכתוצאה מהן הוא מקרין קרינת רנטגן (ראו חוק וין, קוואזר). התחממות זו הינה יעילה ביותר, ויכולה להפוך עד מספר אחוזים מהמסה של הגז לקרינה, בתהליך יעיל הרבה יותר מאשר היתוך גרעיני למשל. תופעה נוספת הצפויה להתרחש היא היווצרות שני סילוני חלקיקים במהירויות יחסותיות הנפלטים בכיוון המאונך לדסקת הספיחה.

אך למרות זאת, דסקות ספיחה, סילוני חלקיקים ועצמים מסתובבים ניתן למצוא לא רק בקרבת חורים שחורים אלא גם סביב עצמים אחרים, כוכבי נייטרונים למשל. הדינמיקה של גופים אלו בקרבת עצמים שאינם חורים שחורים יכולה להיות זהה לזו שבקרבת חורים שחורים. הערכה של מסת הגוף הדחוס וצפיפותו יכולה להכריע אם מדובר בחור שחור או בעצם קומפקטי אחר. אם יש ראיות לכך שמסה מסוימת מרוכזת בתוך אזור המוגבל על-ידי רדיוס שוורצשילד המתאים למסה זו, אז על-פי תורת היחסות הכללית לפנינו חור שחור.

[עריכה] האם מצאנו אותם?

עדויות לקיומם של חורים שחורים על-מסיביים במרכזי גלקסיות נאספות באמצעות מדידות של גלי רדיו, קרינה תת אדומה, אור נראה וקרינת רנטגן (קרני X)
עדויות לקיומם של חורים שחורים על-מסיביים במרכזי גלקסיות נאספות באמצעות מדידות של גלי רדיו, קרינה תת אדומה, אור נראה וקרינת רנטגן (קרני X)

כיום, קיימת כמות גדולה של עדויות לכך שחורים שחורים אכן קיימים, בשני טווחים עיקריים:

  • חור שחור כוכבי - בעל מסה של כוכב רגיל, וליתר דיוק: פי 3 עד פי כמה עשרות ממסת השמש שלנו.
  • חור שחור על-מסיבי - נמצאים במרכזי גלקסיות, ומסתם שווה ל־0.1% ממסת החלק הכדורי של הגלקסיה.

בנוסף, קיימות מספר עדויות לקיומם של חורים שחורים בינוניים (IMBH), שלהם מסה הגדולה פי כמה מאות מזו של השמש. חורים שחורים אלה עשויים להיות שלב מוקדם בהיווצרות חורים שחורים על מסיביים.

חורים שחורים כוכביים אותרו בעיקר כאשר מסביב לגופים בלתי-נראים בעלי מסה גדולה מ-3 מסות שמש נמצאה דסקת ספיחה הפולטת קרינת רנטגן בקצב משתנה. חורים שחורים כוכביים בודדים, שלא כחלק ממערכת כוכבים כפולה, יכולים להתגלות על-ידי אפקט העידוש הכבידתי שרואים כאשר הם נמצאים בקו אחד עם כדור הארץ ועם כוכב מרוחק, המצוי מאחוריהם יחסית לכדור-הארץ.

ההשערה בדבר קיומם של חורים שחורים על-מסיביים הופיעה לראשונה עם גילוי קוואזרים וגלקסיות אקטיביות בשנות ה־60 של המאה ה־20. המרת מסה לאנרגיה בעקבות התנגשויות בדסקת הספיחה של חור שחור היא ככל הנראה ההסבר לכמויות האנרגיה העצומות הנוצרות בעצמים כאלו. כיום מקובל לראות בקוואזרים חורים שחורים על-מסיביים שנמצאים במרכזן של גלקסיות רחוקות. עצמת הקרינה מקוואזר יכולה להיות חזקה יותר מעצמת הקרינה של הגלקסיה שמקיפה אותו.

בעקבות תצפיות על תנועת כוכבים סביב מרכז גלקסיית שביל החלב, המהווה מקור של קרינת רדיו וקרינת רנטגן, הקרוי *Sgr A, התקבלה הערכה למסת העצם הדחוס במרכז שביל החלב. על-פי הערכה זו מסתו קרובה ל-4 מיליון מסות שמש, והוא מהווה דוגמה לחור שחור על-מסיבי, שעל-פי ההערכה נמצא במרכז כל גלקסיה, או לפחות ברובן.

חורים שחורים קדמונים הם חורים שחורים היפותטיים בעלי מסה של מספר טונות, שייתכן כי נוצרו זמן קצר אחרי המפץ הגדול כאשר צפיפות המסה ביקום הייתה גדולה. בגיל הנוכחי של היקום הם צפויים לסיים את חייהם כתוצאה מקרינת הוקינג שהקטינה את מסתם במשך מיליארדי שנה. חורים שחורים זעירים הם חורים שחורים היפותטיים בעלי גודל תת-פרוטוני, שעל-פי תאורייה של ממדים נוספים צפויים להווצר במאיצי חלקיקים על-פני כדור הארץ.

[עריכה] פיזיקה מתמטית

מטריקת שוורצשילד מהווה פתרון של משוואת איינשטיין במסגרת תורת היחסות הכללית. היא מתארת את מבנה המרחב-זמן מסביב לעצם כדורי דחוס. את מטריקת שוורצשילד ניתן לרשום בעזרת הגדרת אלמנט הקו:

ds^2 = - \left( 1 - {2M \over r} \right) dt^2 + \left( 1 - {2M \over r} \right)^{-1} dr^2 + r^2 d\Omega^2

כאשר נעשה שימוש ביחידות היחסותיות (c = G = 1) ו- d\Omega^2 = d\theta^2 + \sin^2\theta\; d\phi^2 הוא אלמנט סטנדרטי של זווית מרחבית.

על-פי הפתרון של שוורצשילד, עצם כבידתי הוא חור שחור אם הרדיוס שלו קטן מגודל מסוים, הידוע בשם רדיוס שוורצשילד. ביחידות יחסותיות רדיוס שוורצשילד הוא:

r_s = {2\,M}

או, ביחידות MKS:

r_s = {2\,GM \over c^2}

כאשר G הוא קבוע הכבידה, M היא מסת העצם, ו־c היא מהירות האור. עבור עצם עם מסה הדומה לזו של כדור הארץ, רדיוס שוורצשילד יהיה בערך 9 מילימטרים. עבור עצם עם מסה כמו של השמש, רדיוס שוורצשילד יהיה בערך 3 קילומטרים (כאשר הרדיוס הנוכחי של השמש הוא בערך 700,000 קילומטרים).

הצפיפות הממוצעת בתוך רדיוס שוורצשילד קטנה ככל שמסת החור השחור גדלה. לחור שחור שמסתו שווה למסת כדור הארץ תהיה צפיפות של ‎2 × 1030 kg/m3, ואילו לחור שחור על־מסיבי עם מסה של 109  מסות שמש תהיה צפיפות של בערך ‎20 kg/m3. ניתן לחשב את הצפיפות הממוצעת על-פי:

\rho=\frac{3\,c^6}{32\pi M^2G^3}

מכיוון שלכדור הארץ יש רדיוס ממוצע של 6371 קילומטרים, יהיה עליו להדחס 4‎ × 1026 פעמים בכדי לקרוס ולהפוך לחור שחור.

[עריכה] ראו גם

[עריכה] פרסומים מדעיים

  1. ^ J. Michell, Phil. Trans. Roy. Soc., 74 (1784) 35-57.
  2. ^ K. Schwarzschild, "On the gravitational field of a mass point according to Einstein's theory", Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.), (1916) 189-196
  3. ^ K. Schwarzschild, "On the gravitational field of a sphere of incompressible fluid according to Einstein's theory", Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.), (1916) 424-434
  4. ^ J.R.Oppenheimer and H.Snyder, Phys. Rev. 56 (1939) 455.

[עריכה] לקריאה נוספת

[עריכה] קישורים חיצוניים

ערך מומלץ

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu