平行四辺形
出典: フリー百科事典『ウィキペディア(Wikipedia)』
平行四辺形(へいこうしへんけい,en:parallelogram)とは、2組の対辺がいずれも平行である四角形のことである。
[編集] 特徴
少なくとも1組の対辺が平行である四角形は台形である。従って、平行四辺形は台形の一種であるといえる。
平行四辺形はほかにも次のような性質を持つ。
平行四辺形の面積Sは [底辺]×[高さ] で求めることができる。これは平行四辺形を面積を変えずに長方形に変形させることで説明できる。(底辺はどの辺でも構わない。ある辺を底辺と決めたら、それと直角に交わる線分を底辺からその対辺まで引いたとき、その線分の長さが高さである。)
平行四辺形の平行でない2辺をベクトルa, b、2辺のなす角を θ とするとき、面積Sはa, bの外積で表され
となる。
平行四辺形は2つの合同な三角形を大きさの異なる角どうしが頂点を共有するように並べた図形である。
三角形の面積を [底辺]×[高さ]÷2 で表わすことができるのは、それが平行四辺形の面積を二等分して求めた結果だからである。
平行四辺形は点対称な図形である。その対称の中心は2本の対角線の交点であり、図形の重心と一致する。しかし一般には線対称な図形ではない。
平行四辺形も台形と同様に平面を敷き詰めることができる。
4本の辺がすべて等しい平行四辺形は菱形、4つの角がすべて等しい平行四辺形は長方形であり、その両方の性質を持つ平行四辺形が正方形である。
[編集] 平行四辺形になるための条件
四角形が次のいずれかの条件にあてはまるとき、平行四辺形になる。つまりこれらの条件はすべて同値である。
- 2組の対辺がそれぞれ平行(定義)
- 2組の対辺がそれぞれ等しい
- 2組の対角がそれぞれ等しい
- 対角線がそれぞれの中点で交わる
- 1組の対辺が平行で、等しい
[編集] 関連項目
カテゴリ: 数学関連のスタブ項目 | 多角形 | 初等数学 | 数学に関する記事