Beryllium
Z Wikipedie, otevřené encyklopedie
Beryllium | |
Atomové číslo | 4 |
Relativní atomová hmotnost | 9.012182 amu |
Stabilní izotopy | 9 |
Elektronová konfigurace | 1s2 2s2 |
Skupenství | Pevné |
Teplota tání | 1 287 °C, (1 560 K) |
Teplota varu | 2 469 °C, (2 742 K) |
Elektronegativita (Pauling) | 1,57 |
Hustota | 1,85 g/cm3 |
Hustota při teplotě tání | 1,690 g/cm3 |
Registrační číslo CAS | 7440-41-7 |
Beryllium, chemická značka Be, (lat. Beryllium) někdy také berylium je nejlehčím z řady kovů alkalických zemin, tvrdý, šedý kov o značně vysoké teplotě tání. Velmi dobře propouští radioaktivní záření. Jeho soli jsou mimořádně toxické.
Obsah |
[editovat] Základní fyzikálně - chemické vlastnosti
Tvrdý, křehký a poměrně těžce tavitelný kov, který reaguje s kyslíkem i vodou a v přírodě se s ním proto setkáváme pouze ve formě sloučenin. Elementární kovové beryllium lze dlouhodobě uchovávat např. překryté vrstvou alifatických uhlovodíků jako petrolej nebo nafta, s kterými nereaguje.
Bylo objeveno roku 1798 Louisem Vauguelinem jako součást minerálu berylu a ve smaragdech.
[editovat] Sloučeniny a výskyt v přírodě
Díky jeho poměrně velké reaktivitě se v přírodě setkáváme prakticky pouze se sloučeninami berylia. Ve všech svých sloučeninách se vyskytuje pouze v mocenství Be2+.
V zemské kůře je beryllium obsaženo v množství 3–10 mg/kg, mořská voda vykazuje mimořádně nízký obsah beryllia - přibližně 0,6 ng Be/l. Ve Vesmíru patří beryllium přes svoji velmi nízkou atomovou hmotnost mezi poměrně vzácné prvky - na jeden jeho atom připadá přibližně 4,5 miliardy atomů vodíku.
Nejdůležitějším minerálem s obsahem berylia je aluminosilikát beryl, jehož složení popisuje následující sumární vzorec: Be3Al2(SiO3 ) 6. Mineralogie zná mnoho různých odrůd berylu, z nichž nejznámější jsou jistě drahé kameny smaragd a akvamarín. Z dalších minerálů s obsahem berylia lze uvést např. chrysoberyl a bertrandit.
[editovat] Výroba a využití
Kovové berylium se průmyslově vyrábí obvykle elektrolýzou směsi roztaveného chloridu berylnatého a sodného na rtuťové katodě v ochranné atmosféře plynného argonu. Beryllium lze připravit také reakcí fluoridu berylnatého s kovovým hořčíkem.
Mimořádně důležitou vlastností kovového berylia je jeho velmi vysoká propustnost pro rentgenové záření a nízkoenergetické neutrony. Proto je cenným materiálem především v jaderné energetice, kde slouží v jaderných reaktorech ke konstrukci neutronových zrcadel a je součástí moderátorových tyčí.
Vysoká propustnost pro rentgenové záření se úspěšně využívá jak při kontrole provozu jaderných reaktorů, tak především při konstrukci rentgenových analyzátorů kovů. Vzorek analyzovaného materiálu je přitom umístěn tak, aby jej od zdroje rentgenového záření oddělovalo okénko z čistého beryllia o síle pouze několika mikrometrů. Tím se dosahuje maximálního průchodu všech vysoce energetických fotonů použitého rentgenova záření a silně tak roste citlivost analýzy.
V metalurgii jsou slitiny beryllia především s mědí ceněny především pro svoji vysokou tvrdost a zároveň elektrickou a tepelnou vodivost. Uvedené slitiny se používají často v elektronice pro výrobu odolných elektrických kontaktů nebo speciálních elektrod pro obloukové svařování. Nízká hustota a vysoká pevnost slitin beryllia vede k jejich využití pro konstrukci součástí letadel a kosmických lodí.
[editovat] Zdravotní rizika
Berylium a především jeho soli jsou ze zdravotního hlediska velmi rizikové. Jsou jak přímo toxické, tak potenciálně karcinogenní, tedy schopné vyvolat rakovinu nebo alespoň zvýšit riziko jejího výskytu.
Při dlouhodobém vdechování zvýšeného množství aerosolu a mikroskopických částeček s obsahem berylia vzniká plicní choroba – chronická berylióza. Je známa již z první poloviny 20. století a prokazatelně postihuje pracovníky, kteří byli dlouhodobě vystaveni pobytu v prostředí s vysokým obsahem prachových částic na bázi beryllia. Jisté procento případů beryliózy obvykle bohužel přerůstá v plicní rakovinu.
Největší zdravotní riziko pro organizmus ale představuje příjem berylnatých solí v potravě nebo pitné vodě. Zvýšený příjem solí berylia způsobuje prokazatelně značné riziko vzniku rakovinného bujení. Z tohoto důvodu je berylium považováno za jeden z velmi vážných rizikových faktorů a jeho výskyt v pitné vodě a potravinách je neustále monitorován, přičemž povolené limity koncentrací patří k nejnižším z běžně sledovaných prvků.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
H | (přehled) | He | |||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo |
*Lanthanoidy | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
**Aktinoidy | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | ||
|
|||||||||||||||||
Skupiny prvků: Kovy - Nekovy - Polokovy - Blok s - Blok p - Blok d - Blok f | |||||||||||||||||
|