New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Pi - Vikipedija

Pi

Straipsnis iš Vikipedijos, laisvosios enciklopedijos.

Šio straipsnio pavadinimas nėra tikslus dėl techninių apribojimų. Tikslus pavadinimas – π.
Graikų abėcėlės raidė pi
Graikų abėcėlės raidė pi

π (tariama pi) – matematinė konstanta, plačiai naudojama matematikoje ir fizikoje. Jos žymėjimui naudojama graikiška raidė pi.

\pi\approx 3{,}14159

Euklido geometrijoje π naudojama apskritimo perimetrui bei plotui paskaičiuoti. Daugumoje naujesnių knygų π analitiškai apibrėžiama trigonometrinėmis funkcijomis, t.y. kaip mažiausią teigiamą x, kuriam sin(x) = 0.

π yra iracionalus skaičius, taip pat nenustatyta ar yra kokia nors seka jo užrašymui, apytikslė šio skaičiaus reikšmė yra:

3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 3

Tikslesnę π išraišką galima rasti – Pi reikšmė (milijonas skaitmenų).

Turinys

[taisyti] Savybės

Apskritimo ilgio ir diametro santykis – π
Apskritimo ilgio ir diametro santykis – π

Pi yra iracionalusis skaičius, tai yra negali būti užrašytas kaip dviejų sveikųjų skaičių santykis. Tai 1761 metais įrodė Johanas Heinrichas Lambertas (Johann Heinrich Lambert). 1882 metais įrodyta, kad skaičius yra transcendentinis, tai yra neegzistuoja toks polinomas su racionaliais koeficientais, kurio šaknis būtų π.

Tuo pačiu neįmanoma išreikšti π reikšmės naudojant baigtinį kiekį sveikų ir racionalių skaičių bei jų šaknų. Tai reiškia, kad neįmanoma naudojant liniuotę ir skriestuvą nupiešti kvadrato, kurio plotas būtų lygus duoto apskritimo plotui.

[taisyti] Formulės su π

[taisyti] Geometrija

Pi naudojama daugelyje geometrinių formulių, susijusių su apskritimais ir sferomis.

Geometrinė figūra Formulė
Apskritimo ilgis (spindulys – r) C = 2 \pi r \,\!
Skritulio plotas (spindulys – r) A = \pi r^2 \,\!
Elipsės plotas (pusašiai a ir b) A = \pi a b \,\!
Sferos tūris (spindulys – r) V = \frac{4}{3} \pi r^3 \,\!
Sferos paviršiaus plotas (spindulys – r) A = 4 \pi r^2 \,\!
Cilindro tūris (aukštis h, spindulys r) V = \pi r^2 h \,\!
Cilindro paviršiaus plotas (aukštis h, spindulys r) A = 2 ( \pi r^2 ) + ( 2 \pi r ) h = 2 \pi r (r + h) \,\!
Kūgio tūris (aukštis h, spindulys r) V = \frac{1}{3} \pi r^2 h \,\!
Kūgio paviršiaus plotas (aukštis h, spindulys r) A = \pi r \sqrt{r^2 + h^2} + \pi r^2 =  \pi r (r + \sqrt{r^2 + h^2}) \,\!

Taip pat 180° (laispsniais) kampas yra lygus π radianų.

[taisyti] Analizė

Daugelis matematinės analizės formulių naudoja π, įskaitant begalines progresijas (ir baigtines sandaugas), integralus ir specialiąsias funkcijas.

  • François Viète, 1593:
\frac2\pi= \frac{\sqrt2}2 \frac{\sqrt{2+\sqrt2}}2 \frac{\sqrt{2+\sqrt{2+\sqrt2}}}2\ldots
  • Leibnico formulė:
\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}
Tai dažniau pasitaikantis užrašymas, bet formalesnis užrašymas yra:
\sum_{n=0}^{\infty} (-1)^{n} \left (\frac{1}{2n+1}\right ) = \frac{\pi}{4}
  • Valio sandauga:
\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}
  • Stirlingo aproksimacija:
n! \sim \sqrt{2 \pi n} \left(\frac{n}{e}\right)^n
  • Eulerio tapatumas:
e^{i \pi} + 1 = 0\;
e^{2 \pi i} = 1\;
  • Vienetinio apskritimo ketvirtadalio ribojamas plotas:
\int_0^1 \sqrt{1-x^2} = {\pi \over 4}

[taisyti] Kompleksinė analizė

e^{i\pi}\,\!+1=0
  • Liekanos teoremos taikymas
\oint\frac{dz}{z}=2\pi i

[taisyti] Skaičių teorija

Keletas π panaudojimų skaičių teorijoje:

  • Tikimybė, kad du atsitiktinai parinkti sveikieji skaičiai yra tarpusavyje pirminiai yra 6/π2.
  • Tikimybė, kad atsitiktinai parinktas skaičius bus bešaknis (neturės nei vieno sveiko daliklio didesnio už 1, turinčio sveiką šaknį) yra 6/π2.
  • Vidutinis skaičius būdų užrašyti teigiamą sveiką skaičių kaip dviejų sveikų skaičių, turinčių sveiką šaknį (atsižvelgiant į tvarką), sumą yra π/4.

[taisyti] Fizika

Fizikos formulės.

  • Haizenbergo neapibrėžtumo principas:
\Delta x \Delta p \ge \frac{h}{4\pi}
  • Einšteino reliatyvumo teorijos lauko lygtis:
R_{ik} - {g_{ik} R \over 2} + \Lambda g_{ik} = {8 \pi G \over c^4} T_{ik}
  • Kulono dėsnis elektriniam laukui:
F = \frac{\left|q_1q_2\right|}{4 \pi \epsilon \epsilon_0 r^2}

[taisyti] Tikimybių teorija ir statistika

Tikimybių teorijoje ir statistikoje yra daug tikimybių pasiskirstymo formulių, kuriose naudojama π konstanta, pavyzdžiui:

  • Normalaus pasiskirstymo su vidurkiu μ ir standartinui nukrypimu σ tikimybės tankio funkcija:
f(x) = {1 \over \sigma\sqrt{2\pi} }\,e^{-(x-\mu )^2/(2\sigma^2)}
  • tikimybės tankio funkcija Koši pasiskirstymui:
f(x) = \frac{1}{\pi (1 + x^2)}

[taisyti] Istorija

Simbolis „π“ kaip Archimedo konstanta pirmą kartą panaudotas 1706 Viljamo Džonso (William Jones) knygoje Naujas Supažindinimas su Matematika, nors ir anksčiau šis simbolis buvo naudotas apskritimo ilgio žymėjimui. Žymėjimas tapo standartu po to, kai ją adaptavo Leonardas Euleris (Leonhard Euler). Žymėjimas naudojamas dėl to, kad raidė π yra pirmoji graikiško žodžio περιμετρος (perimetros; reiškia 'matuoti žemę') raidė.

Trumpa π simbolio istorija:

Data Asmuo π reikšmė
(paryškintos patikslinančios reikšmės)
XX amžius pr. m. e. Babilonas 25/8 = 3,125
XX amžius pr. m. e. Egiptas (16/9)² = 3,160493...
XII amžius pr. m. e. Kinija 3
VI amžius pr. m. e. Karalių knyga 3
434 pr. m. e. Anaksagoras mėgino iš apskritimo padaryti kvadratą  
III amžius pr. m. e. Archimedas 223/71 < π < 22/7
(3,140845... < π < 3,142857...)
211875/67441 = 3,14163...
20 pr. m. e. Vitruvijus 25/8 = 3,125
130 Čang Hongas √10 = 3,162277...
150 Ptolemijus 377/120 = 3,141666...
250 Vang Fau 142/45 = 3,155555...
263 Liu Hui 3,14159
480 Zu Chongzhi 3,1415926 < π < 3,1415927
499 Aryabhatta 62832/20000 = 3,1416
598 Brahmagupta √10 = 3,162277...
800 Al Khwarizmi 3,1416
XII amžius Bhaskara 3,14156
1220 Fibonačis 3,141818
1400 Madhava 3,14159265359
Visi įrašai nuo 1424 pateikiami teisingais skaitmenim po kablelio.
1424 Jamshid Masud Al Kashi 16 skaitmenų
1573 Valenthus Otho 6 skaitmenys
1593 François Viète 9 skaitmenys
1593 Adriaen van Roomen 15 skaitmenų
1596 Ludolph van Ceulen 20 skaitmenų
1615 Ludolph van Ceulen 32 skaitmenys
1621 Willebrord Snell (Snellius) 35 skaitmenys
1665 Izaokas Niutonas 16 skaitmenų
1699 Abraham Sharp 71 skaitmuo
1700 Seki Kowa 10 skaitmenų
1706 John Machin 100 skaitmenų
1706 William Jones įvedė graikiškąją π raidę  
1730 Kamata 25 skaitmenys
1719 De Lagny suskaičiavo 127 skaitmenų, bet ne visus tiksliai 112 skaitmenų
1723 Takebe 41 skaitmuo
1734 Leonardas Euleris adaptavo raidę π  
1739 Matsunaga 50 skaitmenų
1761 Johann Heinrich Lambert įrodė, kad π yra iracionalus skaičius  
1775 Euleris iškėlė hipotezę, kad π yra transcendentinis skaičius  
1789 Jurij Vega suskaičiavo 140 skaitmenų, ne visus teisingai 137 skaitmenys
1794 Adrien-Marie Legendre parodė, kad π² (taip pat ir π) yra iracionalus, dėl to π galėtų būti transcendentinis.  
1841 Rutherford suskaičiavo 208 skaitmenis, ne visus teisingai 152 skaitmenys
1844 Zacharias Dase ir Strassnitzky 200 skaitmenų
1847 Thomas Clausen 248 skaitmenys
1853 Lehmann 261 skaitmuo
1853 Rutherford 440 skaitmenų
1853 William Shanks 527 skaitmenys
1855 Richter 500 skaitmenų
1874 William Shanks daugiau nei 15 metų skaičiavo 707 skaitmenį, bet ne visus teisingai (klaida rasta 1946) 527 skaitmenys
1882 Lindemann įrodė kad π transcendentinis  
1946 D. F. Fergusonas naudodamas stalinį kalkuliatorių 620 skaitmenų
1947 710 skaitmenų
1947 808 skaitmenys
Nuo 1949 skaičiavimai atlikti kompiuteriais.
1949 J. W. Wrench, Jr, ir L. R. Smith pirmieji panaudojo kompiuterį (Eniac) skaičiuoti π 2 037 skaitmenys
1953 Mahler parodė kad π nėra Liuvilio skaičius  
1955 J. W. Wrench, Jr, ir L. R. Smith 3 089 skaitmenys
1961 100 000 skaitmenų
1966 250 000 skaitmenų
1967 500 000 skaitmenų
1974 1 000 000 skaitmenų
1992 2 180 000 000 skaitmenų
1995 Yasumasa Kanada > 6 000 000 000 skaitmenų
1997 Yasumasa Kanada ir Takahashi > 51 500 000 000 skaitmenų
1999 Yasumasa Kanada ir Takahashi > 206 000 000 000 skaitmenų
2002 Yasumasa Kanada su komanda > 1 240 000 000 000 skaitmenų
2003 Yasumasa Kanada su komanda > 1 241 100 000 000 skaitmenų

[taisyti] π skaitinės aproksimacijos

Dėl π transcendentinės prigimties, nėra gražios išraiškos, kuri aprašytų π. Dėl to skaičiavimams naudojama skaičiaus aproksimacija. Daugelyje atvejų, 3,14 arba 22/7 yra pakankamo tikslumo reikšmė, inžinieriai dažnai naudoja 3,1416 ar 3,14159 didesniam tikslumui.

Pirma žinoma aproksimuota π reikšmė yra Egipto raštininko Ahmeso kurtas tekstas. Matematinis papirusas sukurtas Egipto antrąjame periode, nors Ahmesas teigia, kad kopijavo Viduriniosios Egipto karalystės tekstus, pateikta reikšmė gaunama padalinus 256 iš 81 (3,160).

Kinų matematikas Liu Hui 263 metais suskaičiavo π kaip 3,141014 (teisingi trys skaitmenys) ir siūlė, kad 3,14 yra pakankamai gera aproksimacija.

Indų matematikas ir astronomas Aryabhata pateikė tikslią π aproksimaciją. Jis rašė „Pridėk keturis prie šimto, padaugink iš aštuonių ir pridėk šešiasdešimt du tūkstančius. Rezultatas yra apytikslis ilgis apskritimo, kurio skersmuo yra dvidešimt tūkstančių. Pagal šią taisyklę skaičiuojamas apskritimo ilgis pagal skersmenį“. Kitaip tariant, (4+100)×8 + 62000 yra ilgis apskritimo, kurio spindulys yra 20000. Tokiu būdu π = 62832/20000 = 3,1416, teisinga apytikslė suapvalinta reikšmė.


[taisyti] Atviri klausimai

Svarbiausias su π susijęs neatsakytas klausimas – ar tai normalusis skaičius, t.y. ar egzistuoja kokia nors nuspėjama skaitmenų seka ar kiekvienas tolesnis skaitmuo visai „atsitiktinis“. Tai galiotų ne tik dešimtainei sistemai. Dabartinės žinios yra pakankamai mažos – net nežinoma kuris iš skaitmenų pasitaiko be galo dažnai.

Taip pat nežinoma ar π ir e yra algebriškai nepriklausomos konstantos, t.y. ar egzistuoja polinominis ryšys tarp π ir e su racionaliaisiais koeficientais.

[taisyti] π prigimtis

Ne Euklido geometrijoje trikampio kampų suma gali būti didesnė ar mažesnė už π radianų, taip pat apskritimo ilgio ir spindulio santykis gali būti nelygus π. Tačiau tai nekeičia π apibrėžimo, tik formules, kuriose naudojama π. Taigi, π neįtakojama visatos formos, ji nėra fizikinė, bet matematinė konstanta, apibrėžta nepriklausomai nuo bet kokių fizikinių matavimų. Ji naudojama ir fizikoje tik todėl, kad yra patogi daugumoje modelių.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu