Stephen Hawking
Un article de Wikipédia, l'encyclopédie libre.
Stephen W. Hawking est un physicien théoricien et cosmologiste anglais, né le 8 janvier 1942 à Oxford.
Ses travaux principaux sont liés à la physique relativiste, à l'espace-temps. La renommée mondiale de S. Hawking tient à la fois à la qualité de ses recherches et à son handicap corporel (il souffre de sclérose latérale amyotrophique).
L'astéroïde (7672) Hawking a été nommé en son honneur.
Sommaire |
[modifier] Biographie
Le jeune Hawking n'est pas particulièrement brillant à l'école, mais son goût pour les sciences physiques le mène à l'université d'Oxford, un lieu d'ennui relatif d'où il sort avec les honneurs. L'université de Cambridge est un tout autre monde : d'un côté, Hawking y débute son passionnant doctorat sur la relativité générale, de l'autre, sa maladie se déclare. Malgré cette difficulté, l'étude des singularités, concept physique et astronomique récent, permet au chercheur de développer différentes théories, qui le mèneront du Big Bang aux trous noirs. En premier lieu, Roger Penrose et lui construisent la structure mathématique répondant à la question d'une singularité comme origine de l'Univers. Ensuite, à partir des années 70, Hawking approfondit ses recherches sur les densités infinies locales, et ses études sur les trous noirs ont fait progresser bien d'autres domaines. Enfin, la théorie du tout, visant à unifier les quatre forces physiques, est au centre des recherches actuelles de Hawking. Le but est de démontrer que l'Univers peut être décrit par un modèle mathématique stable, déterminé par les lois physiques connues, en vertu du principe de croissance finie mais non bornée, modèle auquel Hawking a donné beaucoup de crédit.
Son handicap lourd ne saurait expliquer à lui seul le grand succès de ses recherches ; Hawking a cherché à vulgariser son travail, et son livre Une brève histoire du temps est l'un des plus grands succès de littérature scientifique. En 2001, paraît son deuxième ouvrage, L'univers dans une coquille de noix qui vulgarise le dernier état de ses réflexions, en abordant la supergravité et la supersymétrie, la théorie quantique et théorie-M, l'holographie et la dualité, la théorie des supercordes et des p-branes... Il s'interroge également sur la possibilité de voyager dans le temps et sur l'existence d'univers multiples.
[modifier] Dernières nouvelles
En 2003, au cours des séminaires qu'il donne au Caltech, il explique l'avenir de la physique tout en exprimant ses doutes quant à l'existence d'une théorie unifiée.
Le 15 juillet 2004, l'organisateur de la 17e Conférence sur la Relativité Générale et la Gravitation qui se tient à Dublin une semaine plus tard, reçoit une note signée Hawking disant : « J'ai résolu le problème du paradoxe de l'information des trous noirs et je voudrais en parler ». Il est donc inscrit au programme en dernière minute. Le 21 juillet 2004, Hawking annonce qu'il vient de perdre le pari qu'il avait fait avec Kip Thorne contre John Preskill, qui tenait depuis 30 ans. Arguments à l'appui, il explique qu'il s'est trompé, et qu'en fin de compte les trous noirs libèrent une partie de l'information qu'ils ont retenue au terme d'une période incommensurablement longue[1][2]. Son passé comme son avenir sont donc totalement prédictibles.
Il a récemment fait sensation en annonçant[3] qu'il croit que la colonisation d'autres planètes et/ou de la Lune est impérative afin d'assurer la survie de la race humaine.
Le 24 août 2006 il reçoit la médaille Copley, l'exemplaire de la médaille reçu par Hawking a été transporté dans l'espace lors d'une mission de la navette spatiale en juillet 2006.[4]
Lundi 8 janvier 2007, à 65 ans, Stephen Hawking a annoncé qu'il prévoyait d'effectuer un voyage dans l'espace lors d'un des premiers vols touristiques de la compagnie privée Virgin Galactic dans deux ans, dans une interview publiée lundi par le Daily Telegraph : "Cette année j'ai prévu un vol (atmosphérique) en apesanteur avant d'aller dans l'espace en 2009", a expliqué le scientifique, passé à la notoriété avec la publication en 1988 d'"Une brève histoire du temps".
Le jeudi 26 juillet 2007, dans le cadre des rencontres d'astrophysique, Stephen Hawkings animera une conférence sur l’origine de l’univers au [lazaret Ollandini][2]à Ajaccio.
[modifier] Anecdotes
Stephen Hawking n'a jamais caché l'intérêt qu'il porte à l'univers de Star Trek. Il joue son propre rôle dans le prologue de l'épisode « Descent, Part I » de la série « Star Trek: The Next Generation », engagé dans une partie de poker avec Isaac Newton et Albert Einstein. Dans l'épisode final de cette même série, le personnage de Data est titulaire de la chaire lucasienne, celle-là même qu'occupe Hawking à Cambridge, à la suite de Newton.
Dans le cycle d'Hypérion de Dan Simmons, les nefs interstellaires sont équipées de réacteurs à poussée Hawking, mais qui sont un peu dépassés pour l'époque avancée du roman.
Enfin, Stephen Hawking a préfacé l'ouvrage « La physique de Star Trek, ou comment visiter l'univers en pyjama » de Lawrence M. Krauss.
[modifier] Recherches
[modifier] Résumé
[modifier] En quelques lignes
[modifier] La radiation Hawking
Au milieu des années 60, alors qu'il poursuit ses études de physicien en vue d'obtenir son doctorat, Hawking démontre que la théorie de la relativité générale d'Einstein implique que l'espace et le temps ont eu un commencement, le Big Bang, et une fin, les trous noirs.
Ces conclusions le conduisent à découvrir dès 1963 que les trous noirs ne seraient pas si noirs que cela, mais qu'ils seraient capables d'émettre un rayonnement, le rayonnement Hawking. La réaction initiale de la communauté scientifique ne fut pas très positive.
La radiation Hawking correspond à un rayonnement de corps noir, est émise dans toutes les directions et conduit à deux conclusions :
- d'une part, ce rayonnement renverse la définition même du trou noir puisque dans ce cas-ci, il libère des particules dans l'espace ;
- d'autre part, ce phénomène conduit finalement à son évaporation quantique et sa disparition dans un intense flash d'énergie pure.
[modifier] Les mini-trou noirs
En 1971, Hawking avance l'hypothèse que le phénomène du Big Bang aurait dispersé dans l'espace des mini-trous noirs d’une masse d’environ 109 tonnes et de la taille d'un proton ainsi que des trous noirs plus massifs et de la taille d'une montagne. Des trous noirs aussi massifs que dix millions de masses solaires pourraient également résider au centre des galaxies, ce qui expliquerait l'intense énergie émise par les radiogalaxies et les quasars.
[modifier] L'entropie des trous noirs
- Article détaillé : Entropie des trous noirs.
Mais à force de calculs, il découvre également qu'en appliquant les lois de la physique quantique à la cosmologie, il peut déterminer la dimension des singularités, ces « points de densité et de courbure d'espace-temps infinis » prédits par la relativité générale et que l'on ne peut pas traiter mathématiquement. Il réalise que l'horizon des évènements des trous noirs (la limite sous laquelle rien ne peut s'échapper) ne peut pas diminuer lorsqu'il attire de la matière. Si on prend une analogie avec la thermodynamique dit-il, c'est exactement ce que dit la deuxième loi de la thermodynamique : « dans un système fermé, l'entropie (son degré de désordre) ne peut pas décroître ». D'autres disent plus simplement que le chaos augmente. Dans une singularité, le système thermodynamique est totalement désordonné car le tenseur de Weyl est dominant, il tend même vers l’infini, ce qui permet à Hawking de conclure que son entropie est maximale. Mais son confrère, Jacob Bekenstein de l'université de Princeton lui répond, qu'il ne s'agit pas seulement d'une analogie, l'horizon des évènements représente la mesure de l'entropie du trou noir. Il s'ensuit un échange d'arguments par articles interposés jusqu'à ce que Hawking lui fasse remarquer que si un trou noir présente une entropie, il a donc aussi une température, et s'il a une température, il doit émettre un rayonnement, mais que par définition un trou noir n'émet rien, aucun rayonnement. C'est alors qu'Hawking va plus loin dans ses calculs et découvre qu'un trou noir peut finalement émettre un rayonnement de manière constante. Il pense tout d'abord avoir fait une erreur de calcul et garde ses travaux pour lui : « Je craignais, dit-il, que Bekenstein ne le découvre, et ne l'utilise comme argument pour appuyer sa propre théorie ». Finalement Hawking le convainc de l'exactitude de son résultat et qu'on peut utiliser la physique quantique pour expliquer le mécanisme de rayonnement qui porte aujourd'hui son nom. Bekenstein s'y plie à contrecœur, disant que c'est « fondamentalement exact mais d'une manière à laquelle je ne m'attendais certainement pas ».
Hawking aborde la question plus tard dans la première version de son livre « Trous noirs et bébés univers » avec moult détails puis supprime ce passage en disant simplement que Jacob Bekenstein lui a fait une « suggestion cruciale ». On lui attribue en réalité le fait qu'il voulait tourner la théorie de Berkenstein en dérision, « ricanant » de la théorie de son concurrent, la traitant de « scandaleuse », ou d'« insensée » pour accroître la valeur de ses résultats. Même son directeur de thèse, le Dr Dennis Sciama trouve « son ton méprisant face au travail de Bekenstein ». Finalement tout le travail de son concurrent est oublié.
[modifier] La perte d'information dans un trou noir
- Article détaillé : Théorème de calvitie.
Si un trou noir est capable de rayonner, ce n'est pas pour autant que cette radiation contient une information sur le trou noir. La particule émise peut être quelconque tant que sa longueur d'onde est supérieure au quart de la circonférence du trou noir (celle de l'horizon des évènements). En fait, en absorbant tout jusqu'à la lumière, le trou noir devient une censure cosmique comme le disait Penrose, ne libérant aucune information sur ses propriétés. Du moins Hawking le pense-t-il à l'époque. Mais ceci n'étant qu'une solution théorique tirée de ses calculs, il fait le pari avec Kip Thorne contre John Preskill que les trous noirs constituent la phase terminale de l'univers et emprisonnent à jamais tout ce qui passe à leur proximité sans libérer la moindre information.
[modifier] Les trous de ver
- Article détaillé : Trou de ver.
Hawking décrit également les « trous de ver » (wormholes), des fluctuations quantiques dans l'espace-temps qui, à l'image des tunnels, permettent de prendre des raccourcis dans l'espace-temps. Cette théorie est reprise et vulgarisée par les médias, bien que rien ne prouve que ces trous de ver existent et que personne n'est capable de dire si ces entités qui ont une échelle subatomique peuvent se maintenir à l'échelle macroscopique sans s'effondrer en raison de leur instabilité intrinsèque.
[modifier] La flèche du temps et l'univers sans bord
- Article détaillé : Flèche du temps.
En 1983, Hartle et Hawking abordent également la question de la flèche du temps. Hawking propose (ceci n'étant pas déduit d'un principe physique fondamental) la conjecture (le théorème) d'un univers sans bord (no-boundary) qui n'aurait pas de frontière, prenant naissance dans un temps imaginaire pour éviter l'écueil des infinis et des instants zéro asymptotiques et inatteignables. Hawking explique que c'est la seule manière d'entrevoir le commencement de l'univers d'une manière totalement déterminée par les seules lois de la science, sous-entendant que le Créateur n'y joue aucun rôle dominant.
[modifier] La théorie de l'inflation
- Article détaillé : Inflation cosmique.
[modifier] Nouvelle théorie sur les trous noirs
Stephen Hawking est sur le devant de la scène en juillet 2004 en présentant une nouvelle théorie sur les trous noirs qui va à l'encontre de sa propre ancienne théorie, perdant ainsi un pari que lui et Kip Thorne avaient fait avec John Preskill, un physicien des particules. Classiquement, on peut montrer que l'information qui passe par l’horizon d'un trou noir est perdue pour notre univers. Ce fait est connu sous le nom de théorème de calvitie. Le problème avec ce théorème est qu'il implique que le trou noir émet les mêmes radiations quel que soit ce qui y rentre. Ainsi, si un état pur quantique est jeté dans un trou noir, un état mélangé en ressortira. Ceci va à l'encontre des règles de la mécanique quantique et est connu sous le nom de paradoxe de l’information perdue des trous noirs.
Hawking avait auparavant spéculé que la singularité au centre du trou noir pouvait former un pont vers un "bébé univers" dans lequel l'information perdue pouvait passer ; de telles théories sont très populaires dans la science-fiction. Mais d'après la nouvelle idée de Hawking, présentée à la 17e Conférence Internationale sur la Relativité Générale et la Gravitation, le 21 juillet 2004 à Dublin, les trous noirs finissent par transmettre, de manière désordonnée, l'information de toute la matière qu'ils avalent[5][2].
Ayant conclu que l'information est conservée, Hawking concède qu'il a perdu son pari, cédant à Preskill son encyclopédie. Toutefois, Thorne reste dubitatif vis-à-vis de la démonstration de Hawking et refuse de contribuer à la récompense.
En juillet 2005 l'annonce de Hawking a donné lieu à une publication dans la revue Physical Review[1] et largement débattue dans la communauté scientifique[6][7].
[modifier] Notes
- ↑ 1,0 1,1 (en)Information Loss in Black Holes Phys.Rev. D72 (2005) 084013
- ↑ 2,0 2,1 (en)Black holes and the information paradox. Prepared for GR17: 17th International Conference on General Relativity and Gravitation, Dublin, Ireland, 18-24 Jul 2004
- ↑ (fr) [1]
- ↑ (en) médaille Copley 2006
- ↑ http://www.dcu.ie/~nolanb/gr17.htm GR Conference website
- ↑ (en)Article du blog de Lubos Motl consacré à la résolution d'Hawking du paradoxe de l'information pour les trous noirs.
- ↑ Citation scientifiques de l'article de Hawking d'après la base de données SPIRES.
[modifier] Liens externes
Portail de l'astronomie – Accédez aux articles de Wikipédia concernant l'astronomie. |