誘電体
出典: フリー百科事典『ウィキペディア(Wikipedia)』
誘電体(ゆうでんたい)とは、導電性よりも誘電性が優位な物質である。広いバンドギャップを有し、直流電圧に対しては電気を通さない絶縁体としてふるまう。身近に見られる誘電体の例として、多くのプラスティック、セラミック、雲母(マイカ)、油などがある。
誘電体は電子機器の絶縁材料、コンデンサの電極間挿入材料、半導体素子のゲート絶縁膜などに用いられている。また、高い誘電率を有することは光学材料として極めて重要であり、光ファイバー、レンズの光学コーティング、非線形光学素子などに用いられている。
目次 |
[編集] 誘電分極
誘電性の源は誘電体内部に電気双極子が生じることである。これを誘電分極と呼び、電子分極、イオン分極、配向分極、空間電荷分極に分類される。 誘電体内部では電子は自由に動くことができない。このような誘電体に外から電界を与えると、誘電体中の原子(あるいは分子)はプラスの電荷に偏った部分と、マイナスの電荷に偏った部分に分かれる。これを電子分極と呼ぶ。 NaClのようなイオン結晶の場合、外から電界を与えるとNa+とCl-が相対的に変位して双極子が発生する。これをイオン分極(原子分極)と呼ぶ。配向分極は誘電体を構成する分子が極性を持っている場合に考えられる。 電界がかかっていない場合分子はランダムな方向を向いているため全体としては電気的双極子を持たないが、電界を与えると分子が配向するために双極子が生じる。配向分極では一般に双極子モーメントが電子分極やイオン分極よりも大きい。さらに電界を充分に長時間かけていると電荷担体が誘電体の中を移動して双極子を生じる。これを空間電荷分極と呼ぶ。
[編集] 誘電分散
誘電率は電界の周波数に依存する。これを誘電分散と呼ぶ。 空間電荷分極と配向分極は緩和型、イオン分極と電子分極は共鳴型の誘電分散を示す。
[編集] 誘電体の分類
誘電体には最も基本的な常誘電体および圧電体・焦電体・強誘電体の全4種類に分類され、以下のような性質を示す。なお、強誘電体はこれら全ての特徴を兼ね備え、焦電体は焦電体・常誘電体の性質も示すなど、右の図のような関係にある。
[編集] 常誘電体
圧電体、焦電体、強誘電体以外の全ての誘電体のこと。
[編集] 圧電体
応力を加えることにより分極(および電圧)が生じる誘電体を圧電体と呼ぶ。 また、逆に電圧を印加することで応力および変形が生じる。これらの性質は圧電性と呼ばれ、ソナーなどに利用されている。
[編集] 焦電体
圧電体のうち、微小な温度変化に応じて分極(およびそれによる電圧)が生じるものを特に焦電体と呼ぶ。この性質は赤外線センサなどに応用されている。
[編集] 強誘電体
焦電体のうち、外から電界を与えなくても自発的な分極を有しており、これを外部からの電界によって方向を反転させることのできるものを特に強誘電体と呼ぶ。 強誘電体の特徴として、分極が外部電場に対するヒステリシス特性を有することが挙げられる。この特性は不揮発性メモリの1種であるFeRAMに応用されている。
[編集] 高誘電率材料と低誘電率材料
半導体素子の微細化、低消費電力化のために、トランジスタのゲート絶縁膜を薄膜化し、静電容量を大きくすることで高性能化を計ってきたが、量子力学的なトンネル効果等によるリーク電流の増大を招き、デバイスの信頼性を著しく低下させている。薄膜化に代わる静電容量を増大させる方法として、ゲート絶縁膜を従来の誘電率が低いSiO2系材料から高誘電率絶縁膜(High-k絶縁膜)にする必要性が高まってきている。有望な高誘電率絶縁膜としてHfO2系材料などが挙げられる。
同時に半導体素子の微細化は、多層配線間でコンデンサ容量(寄生容量)を形成してしまい、これによる配線遅延が問題になってきている。寄生容量を低減させるために層間絶縁膜を低誘電率絶縁膜(Low-k絶縁膜)にする必要性が高まってきている。有望な低誘電率絶縁膜としてSiOF(酸化シリコンにフッ素を添加したもの)、SiOC(酸化シリコンに炭素を添加したもの)、有機ポリマー系の材料などがある。