Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Grupa (matematika) - Wikipédia

Grupa (matematika)

Z Wikipédie

Grupa je jednou zo základných algebraických štruktúr. V sekcii „Definícia“ možno nájsť formálnu definíciu grupy. Sekcia „Základné vysvetlenie“ podáva informácie o motivácii k štúdiu grúp aj pre laika.

Obsah

[úprava] Základné vysvetlenie

Všimnime si napríklad množinu celých čísel, teda napríklad čísla ako -10, -4, 0, 1, 2, 65, atď. Na tejto množine je definovaná operácia sčítanie. Zaoberajme sa ďalej len operáciou sčítanie a množinou celých čísiel. Všimnime si pre štandartné sčítanie niekoľko vlastností:

  1. Sčítanie je na celých číslach asociatívna operácia. Teda napríklad platí, že 3 + (5 + 7) = (3 + 5) + 7. Poloha zátvoriek teda pre asociatívne operácie, ako napríklad „bežné“ sčítanie nie je dôležitá.
  2. Ďalej pre operáciu sčítanie a celé čísla platí, že vzhľadom na danú operáciu existuje neutrálny prvok, ktorým je pri „bežnom sčítaní“ číslo 0. Inak povedané, neutrálny prvok je prvok, pre ktorý platí: x + 0 = x = 0 + x, teda neutrálny prvok „nezmení hodnotu“ pôvodného čísla.
  3. Ku každému celému číslu existuje opačné číslo. Napríklad opačné číslo k číslu 689 je pre bežné sčítanie, ktorým sa zaoberáme, číslo -689. Pre číslo(označme ho x) a k nemu opačné číslo(označme ho y) platí: x + y = neutrlálny prvok. Teda, ak číslo sčítame s opačným číslom, dostávame neutrálny prvok (v tomto prípade 0).
    Poznámka: y sa v algebre, aby bolo jasné ku ktorému číslu to je opačné číslo zvykne označovať značkou x-1. Neoznačujeme tým však bežnú operáciu mocnina.

Tieto 3 vlastnosti, teda asociatívnosť, existencia neutrálneho prvku a inverzných prvkov sú v matematike veľmi časté. Preto je užitočné študovať ich spoločné vlastnosti a vzťahy s inými štuktúrami. Pre podobné dvojice množín a operácií sa prijal spoločný názov grupa.

[úprava] Základné príklady

  • Množina {... ,-12, -9, -6, -3, 0, 3, 6, 9, 12, ...} a operácia sčítania tieto vlastnosti spĺňajú.
  • Množina {... 1/625, 1/125, 1/25, 1/5, 1, 5, 25, 125, 625, ...} a operácia násobenia tieto vlastnosti spĺňajú (číslo 1 je neutrálny prvok a napríklad k číslu 125 existuje opačné číslo: 1/125).
  • Množina {... ,-12, -9, -6, -3, 3, 6, 9, 12, ...} a operácia sčítania tieto vlastnosti nespĺňajú, pretože neexistuje neutrálny prvok.
  • Množina {... ,-12, -9, -6, 0, 3, 6, 9, 12, ...} a operácia sčítania tieto vlastnosti nespĺňajú, pretože neexistuje opačné číslo k číslu 3.

[úprava] Definícia

Nasledujúca definícia formalizuje závery zo sekcie „Základné vysvetlenie“

Grupa (G, \circ) je usporiadaná dvojica, kde G je množina a \circ je binárna operácia na tejto množine, pričom

Ak je binárna operácia \circ navyše komutatívna, tak hovoríme o komutatívnej alebo abelovskej grupe.

[úprava] Ďalšie príklady

  • množina celých čísel \mathbb{Z} s klasickou operáciou sčítania + tvorí grupu (\mathbb{Z},+), ktorú nazývame aj aditívna grupa celých čísel,
  • množina racionálnych čísel okrem čísla 0 \mathbb{Q} s k operáciou násobenia \cdot tvorí grupu (\mathbb{Q}\setminus\{0\},\cdot), ktorej sa hovorí aj multiplikatívna grupa racionálnych čísel,
  • dôležitou triedou grúp sú predovšetkým v informatike v teórii šifrovania tzv. grupy zvyškových tried \mathbb{Z}_n s operáciou \oplus a \mathbb{Z}_n\setminus\{0\} s operáciou \otimes (ak n je prvočíslo),
  • ústrednú úlohu pri štúdiu grúp hrá grupa všetkých bijekcií nejakej množiny na tú istú množinu s operáciou skladania zobrazení označovaná ako grupa transformácií a jej špeciálne varianty grupa permutácií a alternujúca grupa (Cayleyho veta vraví, že každá grupa je izomorfná s nejakou grupou transformácií),
  • všetky permutácie n prvkovej množiny s operáciou skladania permutácii vytvárajú grupu, ktorá sa nazýva symetrická grupa rádu n a má n! (n faktoriál) prvkov.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu