กฎลูกโซ่
จากวิกิพีเดีย สารานุกรมเสรี
หัวข้อที่เกี่ยวข้องกับแคลคูลัส |
ทฤษฎีบทมูลฐานของแคลคูลัส | ฟังก์ชัน | ลิมิตของฟังก์ชัน | ความต่อเนื่อง | แคลคูลัสกับพหุนาม | ทฤษฎีบทค่าเฉลี่ย | แคลคูลัสเวกเตอร์ | แคลคูลัสเทนเซอร์ |
อนุพันธ์ |
กฎผลคูณ | กฎผลหาร | กฎลูกโซ่ | อนุพันธ์โดยปริยาย | ทฤษฎีบทของเทย์เลอร์ |
ปริพันธ์ |
การหาปริพันธ์โดยการแทนค่า | การหาปริพันธ์เป็นส่วน | การหาปริพันธ์โดยการแทนที่ฟังก์ชันตรีโกณมิติ | การหาปริพันธ์แบบจาน | การหาปริพันธ์ด้วยเชลล์ | การหาปริพันธ์แบบต่าง ๆ |
ในวิชาแคลคูลัส กฏลูกโซ่ คือสูตรสำหรับการหาอนุพันธ์ของฟังก์ชันคอมโพสิต
เห็นได้ชัดว่า หากตัวแปร y เปลี่ยนแปลงตามตัวแปร u ซึ่งเปลี่ยนแปลงตามตัวแปร x แล้ว อัตราการเปลี่ยนแปลงของ y เทียบกับ x หาได้จากผลคูณ ของอัตราการเปลี่ยนแปลงของ y เทียบกับ u คูณกับ อัตราการเปลี่ยนแปลงของ u เทียบกับ x
สมมติให้คนหนึ่งปีนเขาด้วยอัตรา 0.5 กิโลเมตรต่อชั่วโมง อุณหภูมิจะลดต่ำลงเมื่อระดับความสูงเพิ่มขึ้น สมมติให้อัตราเป็น ลดลง 6 °F ต่อกิโลเมตร ถ้าเราคูณ 6 °F ต่อกิโลเมตรด้วย 0.5 กิโลเมตรต่อชั่วโมง จะได้ 3 °F ต่อชั่วโมง การคำนวณเช่นนี้เป็นตัวอย่างของการประยุกต์ใช้กฎลูกโซ่
ในทางพีชคณิต กฎลูกโซ่ (สำหรับตัวแปรเดียว) ระบุว่า ถ้าฟังก์ชัน f หาอนุพันธ์ได้ที่ g(x) และฟังก์ชัน g หาอนุพันธ์ได้ที่ x คือเราจะได้ ดังนั้น
นอกจากนี้ ด้วยสัญกรณ์ของไลบ์นิซ กฎลูกโซ่เขียนแทนได้ดังนี้:
เมื่อ ระบุว่า f เปลี่ยนแปลงตาม g เหมือนเป็นตัวแปรหนึ่ง.
ในการหาปริพันธ์ ส่วนกลับของกฎลูกโซ่คือการหาปริพันธ์โดยการแทนค่า
สารบัญ |
[แก้] The general power rule
กฎเลขยกกำลังทั่วไปสามารถนำมาใช้กับกฎลูกโซ่ได้
[แก้] Example I
พิจารณา f(x) = (x2 + 1)3. f(x) เทียบได้กับ h(g(x)) โดยที่ g(x) = x2 + 1 และ h(x) = x3 ดังนั้น
-
f'(x) = 3(x2 + 1)2(2x) = 6x(x2 + 1)2
[แก้] Example II
ในการหาอนุพันธ์ของฟังก์ชันตรีโกณมิติ
- f(x) = sin(x2),
เราสามารถเขียน f(x) = h(g(x)) ด้วย h(x) = sinx และ g(x) = x2 จากกฎลูกโซ่ จะได้
- f'(x) = 2xcos(x2)
เนื่องจาก h'(g(x)) = cos(x2) และ g'(x) = 2x
[แก้] กฎลูกโซ่สำหรับหลายตัวแปร
กฎลูกโซ่ใช้ได้กับฟังก์ชันหลายตัวแปรเช่นกัน ตัวอย่างเช่น ถ้าเรามีฟังก์ชัน f(u(x,y),v(x,y)) โดยที่
- u(x,y) = 3x + y2 และ v(x,y) = sin(xy)
ดังนั้น
[แก้] บทพิสูจน์กฎลูกโซ่
ให้ f และ g เป็นฟังก์ชัน และให้ x เป็นจำนวนที่ f สามารถหาอนุพันธ์ได้ที่ g(x) และ g หาอนุพันธ์ได้ที่ x ดังนั้น จากนิยามของการหาอนุพันธ์ได้ จะได้
- ซึ่ง ขณะที่
ในทำนองเดียวกัน
- ซึ่ง ขณะที่
จะได้
ซึ่ง จะเห็นว่าขณะที่ นั้น และ ดังนั้น
- ขณะที่
[แก้] กฎลูกโซ่พื้นฐาน
กฎลูกโซ่นั้นเป็นคุณสมบัติพื้นฐานของนิยามของอนุพันธ์ทั้งหมด เช่น ถ้า E F และ G เป็น ปริภูมิบานาค (รวมไปถึงปริภูมิยูคลิดด้วย) และ f : E → F และ g : F → G เป็นฟังก์ชัน และถ้า x เป็นสมาชิกของ E ซึ่ง f หาอนุพันธ์ได้ที่ x และ g หาอนุพันธ์ได้ที่ f(x) แล้ว อนุพันธ์ (อนุพันธ์เฟรเชต์) ของฟังก์ชันคอมโพสิต g o f ที่ x จะเป็นดังนี้
สังเกตว่าอนุพันธ์นี้เป็นการแปลงเชิงเส้น ไม่ใช่ตัวเลข ถ้าการแปลงเชิงเส้นแทนด้วยเมทริกซ์ (จาโคเบียนเมทริกซ์) การรวมทางด้านขวาจะกลายเป็นการคูณเมทริกซ์
การกำหนดกฎลูกโซ่ที่ชัดเจนสามารถทำได้จากวิธีที่เป็นทั่วไปมากที่สุด คือ ให้ M N และ P เป็นแมนิโฟลด์ Ck (หรือบานาคแมนิโฟลด์) และให้
- f : M → N และ g : N → P
เป็นการแปลงที่หาอนุพันธ์ได้ อนุพันธ์ของ f แทนด้วย df จะเป็นการแปลงจากปมสัมผัสของ M ไปยังปมสัมผัสของ N และสามารถเขียนแทนด้วย
ด้วยวิธีนี้ รูปแบบของอนุพันธ์และปมสัมผัสจะถูกมองเห็นในรูปฟังก์เตอร์บน Category ของแมนิโฟลด์ C∞ โดยมีการแปลง C∞ เป็นสัณฐาน
[แก้] เทนเซอร์กับกฎลูกโซ่
ดู สนามเทนเซอร์ สำหรับคำอธิบายเกี่ยวกับบทบาทพื้นฐานของกฎลูกโซ่ในธรรมชาติทางเรขาคณิตของเทนเซอร์