Гра опукла
Матеріал з Вікіпедії — вільної енциклопедії.
Гра опукла — безкоаліційна гра з n гравцями, в якій хоча б у одного гравця множина чистих стратегій є опуклою підмножиною лінійного простору, а його функція виграшу при будь яких фіксованих стратегіях решти гравців опукла на цій підмножині.
Зміст |
[ред.] Властивості опуклих ігор
Якщо множина чистих стратегій кожного гравця в опуклій грі компактно, а функції виграшу неперервні, то існує ситуація рівноваги, при якій гравці, які мають опуклі функції виграшу, використовують чисті стратегії.
Опукла гра називається скінченною, якщо для кожного гравця множина його чистих стратегій є компактною підмножиною деякого скінченновимірного лінійного простору, а функції виграшу всіх гравців полілінійні. Зокрема, скінченна антагоністична опукла гра задається трійкою <A, B, H>, де A ⊂ Em, B ⊂ En, а функція H має вигляд:
.
Якщо μ та ν — розмірності множини оптимальних стратегій гравців A та B, а ρ — ранг матриці ||aij||, то μ + ν ≤ m + n - ρ.
[ред.] Приклад опуклої гри
Прикладом опуклої гри є антагоністична гра на одиничному квадраті, в якій, при будь яких стратегіях першого гравця функція виграшу опукла на множині чистих стратегій другого гравця. В цьому випадку другий гравець має чисту оптимальну стратегію, а перший — оптимальну стратегію, яка є сумішшю не більш ніж двох чистих.
[ред.] Джерела інформації
- Енциклопедія кібернетики, Дюбін Г. Н., т. 1, с. 336.
[ред.] Дивіться також
Статті теорії ігор | |
Типи ігор |
антагоністичні · диференціальні · матричні · на виживання · рефлексивні · азартні · без побічних платежів · безкоаліційні · біматричні · вироджені · динамічні · з вибором моменту часу · кооперативні · на графі · на одиничному квадраті · опуклі · позиційні · прості · рекурсивні · стохастичні |
Ситуації |
Безвиграшна ситуація · Парадокс Бертрана (економіка) · Ситуація рівноваги |
Стратегія |
змішана · оптимальна · поведінки · чиста |
Теореми |
Максіміна принцип · Мінімаксу теорема |