Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions 行列式 - Wikipedia

行列式

维基百科,自由的百科全书

線性代數行列式是一個函數,其定義域為n \times n的矩陣A,值域為一個純量,寫作det(A)

目录

[编辑] 垂直線記法

矩陣 A 的行列式有時也記作 |A|。絕對值矩陣範數也使用這個記法,有可能和行列式的記法混淆。不過矩陣範數通常以雙垂直線來表示(如︰\|\cdot\|),且可以使用下標。此外,矩陣的絕對值是沒有定義的。因此,行列式經常使用垂直線記法(例如︰克萊姆法則和minor)。例如,一個矩陣︰

A = \begin{bmatrix} a & b & c\\d & e & f\\g & h & i \end{bmatrix}\,

行列式 det(A) 也寫作 | A | ,或明確的寫作︰

|A| = \begin{vmatrix} a & b & c\\d & e & f\\g & h & i \end{vmatrix}\,

即矩陣的方括號以細長的垂直線取代。

[编辑] 計算方法

  • \det(A) = \sum_{\sigma \in S_n} \sgn(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}
其中σ排列的符號差。
  • \det(A) = \sum_{j=1}^n A_{i,j} (-1)^{i+j} M_{i,j}
Mi,jA除去第i行第j列的矩陣的行列式。
  •  :\det \begin{bmatrix}a&b\\ c&d\end{bmatrix}  = ad - bc
  • 3×3的矩陣行列式為det(A) = a1,1a2,2a3,3 + a1,3a2,1a3,2 + a1,2a2,3a3,1a1,3a2,2a3,1a1,1a2,3a3,2a1,2a2,1a3,3

[编辑] 應用

  • 特徵值:若多項式p(x) = det(xIA),特徵值就是多項式的解。
  • 多變元微積分的代換積分法(參見雅可比矩陣
  • nn維實向量所組成的平行多面體的體積,是這些實向量的所組成的矩陣的行列式的絕對值。以此推廣,若線性變換f: \Bbb{R}^n \rightarrow \Bbb{R}^m可用m \times n矩陣A表示,SRn的可測集,則f(S)的體積是S的體積的\sqrt{\det(A ^T A)}倍。
  • Wronskian行列式

[编辑] 定義

將矩陣的每一行寫成a_{1},\ldots,a_{n}。 設Mn(K)為所有定義在K上的n\times n矩陣的集。

存在一且唯一一個函數D:M_n(K) \to K 使得:

  • D(a_{1},\ldots,c a_{i} + a_{i}',\ldots,a_{n}) = c D(a_{1},\ldots,a_{i},\ldots,a_{n}) + D(a_{1},\ldots,a_{i}',\ldots,a_{n}) (多重線性)
  • D(a_{1},a_{2},\ldots,a_{n}) = - D(a_{1},\ldots,a_{i},\ldots,a_{n}) + D(a_{2},a_{1},\ldots,a_{n})(交替性)
  • D(I) = 1

[编辑] 行列式的性質

  • 在行列式中,一行(列)元素全為0,則此行列式的值為0。
\begin{vmatrix}  {\color{blue}0} & {\color{blue}0} & \dots & {\color{blue}0} \\  a_{21} & a_{22} & \dots & a_{2n} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = 0
  • 在行列式中,某一行(列)有公因子k,則可以提出k。
D=\begin{vmatrix}  a_{11} & a_{12} & \dots & a_{1n} \\  \vdots & \vdots & \dots & \vdots \\  {\color{blue}k}a_{i1} & {\color{blue}k}a_{i2} & \dots & {\color{blue}k}a_{in} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}  ={\color{blue}k}\begin{vmatrix}  a_{11} & a_{12} & \dots & a_{1n} \\  \vdots & \vdots & \dots & \vdots \\  a_{i1} & a_{i2} & \dots & a_{in} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}  ={\color{blue}k}D_1
  • 在行列式中,某一行(列)的每個元素是兩數之和,則此行列式可拆分為兩個相加的行列式。
\begin{vmatrix}  a_{11} & a_{12} & \dots & a_{1n} \\  \vdots & \vdots & \dots & \vdots \\  {\color{blue}a_{i1}}+{\color{OliveGreen}b_{i1}} & {\color{blue}a_{i2}}+{\color{OliveGreen}b_{i2}} & \dots & {\color{blue}a_{in}}+{\color{OliveGreen}b_{in}} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}  =\begin{vmatrix}  a_{11} & a_{12} & \dots & a_{1n} \\  \vdots & \vdots & \dots & \vdots \\  {\color{blue}a_{i1}} & {\color{blue}a_{i2}} & \dots & {\color{blue}a_{in}} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}  +\begin{vmatrix}  a_{11} & a_{12} & \dots & a_{1n} \\  \vdots & \vdots & \dots & \vdots \\  {\color{OliveGreen}b_{i1}} & {\color{OliveGreen}b_{i2}} & \dots & {\color{OliveGreen}b_{in}} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}
  • 行列式中的兩行(列)互換,改變行列式正負符號。
\begin{vmatrix}  \vdots & \vdots & \vdots & \vdots \\  {\color{blue}a_{i1}} & {\color{blue}a_{i2}} & \dots & {\color{blue}a_{in}} \\  {\color{OliveGreen}a_{j1}} & {\color{OliveGreen}a_{j2}} & \dots & {\color{OliveGreen}a_{jn}} \\  \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix} =-\begin{vmatrix}  \vdots & \vdots & \vdots & \vdots \\  {\color{OliveGreen}a_{j1}} & {\color{OliveGreen}a_{j2}} & \dots & {\color{OliveGreen}a_{jn}} \\  {\color{blue}a_{i1}} & {\color{blue}a_{i2}} & \dots & {\color{blue}a_{in}} \\  \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix}
  • 在行列式中,有兩行(列)對應成比例或相同,則此行列式的值為0。
\begin{vmatrix}  {\color{blue}2} & {\color{blue}2} & \dots & {\color{blue}2} \\  {\color{blue}8} & {\color{blue}8} & \dots & {\color{blue}8} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = 0
  • 將一行(列)的k倍加進另一行(列)裡,行列式的值不變。
\begin{vmatrix}  \vdots & \vdots & \vdots & \vdots \\  a_{i1} & a_{i2} & \dots & a_{in} \\  a_{j1} & a_{j2} & \dots & a_{jn} \\  \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix} =\begin{vmatrix}  \vdots & \vdots & \vdots & \vdots \\  a_{i1} & a_{i2} & \dots & a_{in} \\  a_{j1}{\color{blue}+ka_{i1}} & a_{j2}{\color{blue}+ka_{i2}} & \dots & a_{jn}{\color{blue}+ka_{in}} \\  \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix}
注意︰一行(列)的k倍加上另一行(列),行列式的值改變。
\begin{vmatrix}  \vdots & \vdots & \vdots & \vdots \\  a_{i1} & a_{i2} & \dots & a_{in} \\  a_{j1} & a_{j2} & \dots & a_{jn} \\  \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix} {\color{red}\ne}\begin{vmatrix}  \vdots & \vdots & \vdots & \vdots \\  a_{i1} & a_{i2} & \dots & a_{in} \\  {\color{red}k}a_{j1}{\color{red}+a_{i1}} & {\color{red}k}a_{j2}{\color{red}+a_{i2}} & \dots & {\color{red}k}a_{jn}{\color{red}+a_{in}} \\  \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix}
  • 將行列式的行列互換,行列式的值不變。其中,行列互換相當於轉置,記作DT = D
D=\begin{vmatrix} a_{ij} \end{vmatrix} =\begin{vmatrix} a_{ji} \end{vmatrix} =D^{\textrm{T}}
例如
\begin{vmatrix}  a_{11} & a_{12} & \dots & a_{1n} \\  a_{21} & a_{22} & \dots & a_{2n} \\  \vdots & \vdots & \ddots & \vdots \\  a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} =\begin{vmatrix}  a_{11} & a_{21} & \dots & a_{n1} \\  a_{12} & a_{22} & \dots & a_{n2} \\  \vdots & \vdots & \ddots & \vdots \\  a_{1n} & a_{2n} & \dots & a_{nn} \end{vmatrix}

[编辑] 性質

  • det(AB) = det(A)det(B)
  • \det(rA) = \det(rI_n \cdot A) = r^n \det(A)
  • 若A是可逆矩陣det(A − 1) = (det(A)) − 1
  • ATA轉置矩陣det(AT) = det(A)
  • \det(\overline{A}) = \overline{\det(A)} (參見共軛)
  • 若矩陣相似,其行列式相同。
    • 行列式是所有特徵值之積。這可由矩陣必和其Jordan標準形相似推導出。

[编辑] 外部連結

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu