Kohlekraftwerk
aus Wikipedia, der freien Enzyklopädie
Ein Kohlekraftwerk ist eine spezielle Form des Elektrizitätswerkes. Es hat seinen Namen von der Kohle als hauptsächlichem Brennstoff. Es gibt Braunkohlekraftwerke und Steinkohlekraftwerke. Die Kraftwerkstypen sind speziell für den jeweiligen Einsatzbrennstoff mit seinen Heizwerten und Ascheanteilen konzipiert.
In Deutschland wird mit Braunkohle-gefeuerten Kohlekraftwerken die Grundlast und mit Steinkohle hauptsächlich die Mittellast gedeckt. Die prozentualen Anteile an der gesamten Stromerzeugung betragen in Deutschland 24% für Steinkohle und 27% für Braunkohle. Ein einzelnes Steinkohlekraftwerk hat eine typische elektrische Leistung von bis zu 700 Megawatt; bei der Zusammenschaltung mehrerer Kraftwerksblöcke zu einem Großkraftwerk addieren sich die installierten Leistungen der einzelnen Blöcke.
Inhaltsverzeichnis |
Kennzeichen
Ein Kohlekraftwerk besitzt folgende typische Kennzeichen:
- Schornsteine,
- Kühltürme,
- Dampfkessel,
- Maschinenhäuser für Dampfturbinen und Generatoren,
- Umspannanlagen mit Transformatoren,
- Anlagen zur Rauchgasreinigung,
- Anlagen zur Erzeugung von Kesselspeise- und Kühlwasser aus dem zur Verfügung stehenden Rohwasser
- Brücken für die Förderbänder zum Transport der Brennstoffe,
- Anlagen zur Behandlung des Rohwassers und von Asche, Schlacke sowie sonstigen Nebenprodukten,
- Freie Flächen zur Lagerung der Brennstoffe,
- Nebengebäude für die Verwaltung, Leitwarten und für die umfangreichen Prüflabore,
- ein Zaun für die Grundstücksumgrenzung mit Zufahrten und Werkstoren.
Prinzipielle Funktionsweise
In einem Kohlekraftwerk wird die zuvor in einer Kohlemühle Braun- oder Steinkohle gemahlen und getrocknet und in den Brennerraum der Staubfeuerung eingeblasen und dort vollständig verbrannt. Bei einem mit Steinkohle gefeuerten Kraftwerk beträgt die notwendige Menge etwa 50 Kilogramm pro Sekunde, bei einem mit Rohbraunkohle betriebenen Kraftwerk sind bis zu 250 Kilogramm in der Sekunde typisch. Die dadurch frei werdende Wärme wird von einem Wasserrohrkessel aufgenommen und wandelt das eingespeiste Wasser in Wasserdampf um. Der Wasserdampf strömt über Rohrleitungen zur Dampfturbine, in der er einen kleineren Teil seiner Energie durch Entspannung abgibt. Unterhalb der Turbine ist ein Kondensator angeordnet, in dem der Dampf den größten Teil seiner Wärme an das Kühlwasser überträgt. Während dieses Vorganges verflüssigt sich der Dampf durch Kondensation.
Eine Speisepumpe fördert das entstandene flüssige Wasser als Speisewasser erneut in den Wasserrohrkessel, womit der Kreislauf geschlossen wird. Ein Teil des erzeugten Dampfes wird zur Vorwärmung des Speisewassers im ECO sowie zur Vorwärmung der Verbrennungsluft im LUVO verwendet. Die in der Turbine erzeugte Drehbewegung wird an dem angekuppelten Generator zur Stromerzeugung genutzt.
Das im Brennerraum durch Verbrennung entstandene Rauchgas wird einer Entstaubung, einer Rauchgasentschwefelung und einer Rauchgasentstickung unterzogen, bevor es über den Schornstein das Kraftwerk verlässt. Das im Kondensator erwärmte Kühlwasser wird im Kühlturm auf die ursprüngliche Temperatur gekühlt, bevor es entweder erneut verwendet oder aber in ein vorhandenes Fließgewässer abgegeben wird. Die Asche des Brennstoffes wird als Schlacke aus dem Brenneraum abgezogen und für die Weiterverwendung als Baustoff vorbereitet. Das gleiche gilt auch für den in der Rauchgasentschwefelung erzeugten Kraftwerkgips.
Steuerung der Abläufe
Sämtliche im Kohlekraftwerk anfallenden Informationen, wie beispielsweise die Messwerte, werden in der Leitwarte angezeigt und ausgewertet. Die Leitwarte ist ein geschlossener Raum mit Messinstrumenten zur Anzeige der Betriebszustände der einzelnen Kraftwerkskomponenten. Mit Schaltern und anderen Steuerorganen kann das Kraftwerkspersonal in den Betriebsablauf eingreifen, sofern das Kraftwerk nicht über eine automatische Regelung erfolgt. Die Eingriffe werden über digitale Datenübertragung an die zugehörigen Hilfsantriebe übermittelt und bewirken in teilweise großer Entfernung von der Leitwarte beispielsweise das Öffnen oder Schließen einer Armatur oder auch eine Veränderung der Zufuhr der Brennstoffe zur Feuerung.
Anfahrverhalten
Im Gegensatz zu den meisten Wasserkraftwerken muss ein Kohlekraftwerk angefahren werden, wenn die Anlage für einen längeren Zeitraum abgeschaltet wurde. Die folgende Tabelle gibt die dafür notwendige Zeitdauer wieder. Die Dauer des Vorganges deckt das Zünden des ersten Brenners bis zum Erreichen der Volllast ab.
Anfahrverhalten eines Kohlekraftwerkes | |
Startart | Anfahrzeiten |
---|---|
Kaltstart nach < 72 h Stillstand | 400 min |
Warmstart nach < 48 h Stillstand | 280 min |
Heißstart nach < 8 h Stillstand | 115 min |
Verbesserung des Wirkungsgrades
Zur optimalen Ausnutzung der im Brennstoff gespeicherten Energie und zur Verbesserung des Wirkungsgrades werden im Kohlekraftwerk verschiedene Verfahren eingesetzt. Wie in jedem thermodynamischen Kreisprozess wird angestrebt, dass das Arbeitsmittel (hier: Wasserdampf) mit einer möglichst hohen Temperatur in die Dampfturbine eintritt und diese mit einer möglichst niedrigen Temperatur wieder verlässt. Die hohe Eintrittstemperatur wird durch ein einmaliges Überhitzen des Wasserdampfes erreicht, wobei der Dampf schon nach einem Teil seines Weges durch die Dampfturbine erneut wieder durch den Dampfkessel geleitet wird und ihm weitere Wärmenergie zugeführt wird. Die Grenze für die höchste Temperatur ist die Temperaturresistenz der verwendeten Stähle für die Rohre des Wasserrohrkessels. Die niedrige Austrittstemperatur des Dampfes wird durch einen ausreichend bemessenen Kondensator verwirklicht. Die niedrigst mögliche Temperatur ist die Eintrittstemperatur des Kühlwassers in den Kondensator. Als zusätzliche Maßnahme wird die Berohrung des Kondensators kontinuierlich durch das Kugelumlaufverfahren von Verschmutzungen befreit, da sich an dieser Stelle Verunreinigungen besonders negativ auf den gesamten Wirkungsgrad bemerkbar machen.
Der derzeitige Stand der Technik beim Wirkungsgrad wird vom Braunkohlekraftwerk mit optimierter Anlagentechnik (BoA) repräsentiert. In Niederaußem ist der erste Block in Betrieb, eine weitere Anlage mit zwei Kraftwerksblöcken befindet sich bei Neurath im Bau. Bei einer installierten Leistung von 2 x 1100 Megawatt wird ein Wirkungsgrad von mehr als 43 % erreicht. Allerdings werden durch die enormen Verbräuche des zugehörigen Tagebaubetriebs (Schaufelradbagger, Bandförderanlagen, elektrische Güterbahnen, Absetzer, Grundwasserhaltung) rund 10 % der erzeugten elektrischen Energie zur Aufrechterhaltung des Kraftwerkbetriebs benötigt.
Moderne Steinkohlekraftwerke erreichen elektrische Wirkungsgrade von rund 45 %. Die relativ geringen Energieaufwendungen zur Bereitstellung des Brennstoffs können im Gegensatz zum Braunkohlekraftwerk vernachlässigt werden.
Zukünftige Entwicklungen
Die technologische Weiterentwicklung der Kohlekraftwerke wird sich in den nächsten Jahrzehnten an ihrem Ausstoß von Kohlendioxid orientieren. Derzeit sind diverse Anlagen in der Versuchsphase, in denen eine Entfernung dieses Treibhausgases aus dem Rauchgas in der Erprobung sind. Es werden folgende Prinzipien der CO2-Abtrennung diskutiert:
- Entfernung des CO2 aus dem Rauchgas durch Absorption
- vorherige Verbrennung des Brennstoffes in einer reinen Sauerstoffatmosphäre zur Aufkonzentration des CO2 im Rauchgas und anschließender Abtrennung.
Alle diese Verfahren beinhalten einen erheblichen Eigenbedarf innerhalb des Gesamtprozesses der Stromerzeugung. Modellrechnungen gehen von einem Wirkungsgradverlust von 10 bis 15% bei einem durchschnittlichen Kohlekraftwerk aus.
Die beim Prozess der CO2-Abtrennung gewonnenen Wertstoffe wie flüssiges Kohlendioxid oder der reine Kohlenstoff können an anderer Stelle verwendet werden. Geplant ist beispielsweise, das Kohlendioxid in der Erdölförderung zur Erhöhung der Lagerstättenenergie in den Untergrund zu verpressen.
Diese Lagerung von Kohlendioxid ist jedoch umstritten, da es zu Katastrophen kommen kann, falls das Kohlendioxid austritt (siehe auch: Nyos-See).
Kohlekraftwerke in der EU
Diese Tabelle zeigt die in der Europäischen Union in Kohlekraftwerken installierten Leistungen in Megawatt, gestaffelt nach Jahreszahlen.
In Kohlekraftwerke installierte Leistungen in MW | ||||
Land | 1974 | 1980 | 1990 | 1999 |
---|---|---|---|---|
Belgien | 951 | 2.056 | 3.499 | 1.824 |
Dänemark | 1.414 | 4.195 | 7.208 | 5.121 |
Deutschland | 18.947 | 19.848 | 25.225 | 30.727 |
Finnland | 1.150 | 2.682 | 2.782 | 2.705 |
Frankreich | 9.100 | 12.905 | 11.530 | 10.728 |
Griechenland | 0 | 0 | 0 | 2 |
Irland | 16 | 15 | 869 | 868 |
Italien | 533 | 2.187 | 3.505 | 3.675 |
Luxemburg | 55 | 55 | 0 | 0 |
Niederlande | 918 | 1.359 | 3.272 | 2.842 |
Österreich | 33 | 16 | 831 | 802 |
Portugal | 61 | 42 | 1.319 | 1.905 |
Schweden | 50 | 50 | 719 | 719 |
Spanien | 2.741 | 3.711 | 7.492 | 10.448 |
UK | 47.837 | 44.022 | 39.990 | 33.563 |
EU15 | 83.697 | 93.144 | 108.241 | 105.928 |
Kostenstruktur eines typischen Kohlekraftwerkes
Die Tabelle zeigt die Kostenstruktur und weitere Kenndaten eines modernen Kohlekraftwerkes für Steinkohle.
Kostenkategorie | Einheit | Betrag |
---|---|---|
Installierte Bruttoleistung | MW | 600 |
Spezifischer Anlagenpreis | €/kW (brutto) | 798 |
Absoluter Anlagenpreis | Mio. € | 478,8 |
Elektrischer Eigenbedarf | % der Bruttoleistung | 7,4 |
Elektrischer Eigenbedarf | MW | 44,4 |
Instandhaltung | %/Jahr | 1,5 |
Bedienungspersonal | Personen | 70 |
Personalkosten je Beschäftigten | Euro/Jahr | 70000 |
Hilfs- und Betriebsstoffe | Euro/MWh | 1,00 |
Brennstoffpreis 1) | Euro/t SKE | 55,00 |
Brennstoffkosten 1) | Cent/kWh | 2,1 |
Stromgestehungskosten 1) | Cent/kWh | ~ 4 |
1) Stand Q4 / 2005, ohne Steinkohlesubventionen
Quelle: Studie Referenzkraftwerk Nordrhein-Westfalen, VGB PowerTech e.V., Essen. Siehe auch: www.vgb.org
Weitere Informationen zum Thema: "www.vgb.org/data/vgborg_/InfoService/vgb-zahlen-fakten-2006-DE-low-CLEAN.pdf"
Beispiele für Kohlekraftwerke
- Kraftwerk Scholven
- Kraftwerk Goldenberg
- Kraftwerk Lippendorf
- Kraftwerk Niederaußem
- Kraftwerk Ibbenbüren
Siehe auch
Weblinks
Literatur
- Strom aus Steinkohle, Stand der Kraftwerkstechnik, Herausgegeben von der STEAG Aktiengesellschaft Essen, Springer-Verlag 1988, ISBN 3-540-50134-7