Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Kohlekraftwerk - Wikipedia

Kohlekraftwerk

aus Wikipedia, der freien Enzyklopädie

Typische Ansicht eines Kohlekraftwerkes
Typische Ansicht eines Kohlekraftwerkes

Ein Kohlekraftwerk ist eine spezielle Form des Elektrizitätswerkes. Es hat seinen Namen von der Kohle als hauptsächlichem Brennstoff. Es gibt Braunkohlekraftwerke und Steinkohlekraftwerke. Die Kraftwerkstypen sind speziell für den jeweiligen Einsatzbrennstoff mit seinen Heizwerten und Ascheanteilen konzipiert.

In Deutschland wird mit Braunkohle-gefeuerten Kohlekraftwerken die Grundlast und mit Steinkohle hauptsächlich die Mittellast gedeckt. Die prozentualen Anteile an der gesamten Stromerzeugung betragen in Deutschland 24% für Steinkohle und 27% für Braunkohle. Ein einzelnes Steinkohlekraftwerk hat eine typische elektrische Leistung von bis zu 700 Megawatt; bei der Zusammenschaltung mehrerer Kraftwerksblöcke zu einem Großkraftwerk addieren sich die installierten Leistungen der einzelnen Blöcke.

Inhaltsverzeichnis

Kennzeichen

Stoff- und Energieflüsse eines Kohlekraftwerk
Stoff- und Energieflüsse eines Kohlekraftwerk
Elektrische Energieverteilung eines Kohlekraftwerkes
Elektrische Energieverteilung eines Kohlekraftwerkes

Ein Kohlekraftwerk besitzt folgende typische Kennzeichen:

Prinzipielle Funktionsweise

In einem Kohlekraftwerk wird die zuvor in einer Kohlemühle Braun- oder Steinkohle gemahlen und getrocknet und in den Brennerraum der Staubfeuerung eingeblasen und dort vollständig verbrannt. Bei einem mit Steinkohle gefeuerten Kraftwerk beträgt die notwendige Menge etwa 50 Kilogramm pro Sekunde, bei einem mit Rohbraunkohle betriebenen Kraftwerk sind bis zu 250 Kilogramm in der Sekunde typisch. Die dadurch frei werdende Wärme wird von einem Wasserrohrkessel aufgenommen und wandelt das eingespeiste Wasser in Wasserdampf um. Der Wasserdampf strömt über Rohrleitungen zur Dampfturbine, in der er einen kleineren Teil seiner Energie durch Entspannung abgibt. Unterhalb der Turbine ist ein Kondensator angeordnet, in dem der Dampf den größten Teil seiner Wärme an das Kühlwasser überträgt. Während dieses Vorganges verflüssigt sich der Dampf durch Kondensation.

Eine Speisepumpe fördert das entstandene flüssige Wasser als Speisewasser erneut in den Wasserrohrkessel, womit der Kreislauf geschlossen wird. Ein Teil des erzeugten Dampfes wird zur Vorwärmung des Speisewassers im ECO sowie zur Vorwärmung der Verbrennungsluft im LUVO verwendet. Die in der Turbine erzeugte Drehbewegung wird an dem angekuppelten Generator zur Stromerzeugung genutzt.

Das im Brennerraum durch Verbrennung entstandene Rauchgas wird einer Entstaubung, einer Rauchgasentschwefelung und einer Rauchgasentstickung unterzogen, bevor es über den Schornstein das Kraftwerk verlässt. Das im Kondensator erwärmte Kühlwasser wird im Kühlturm auf die ursprüngliche Temperatur gekühlt, bevor es entweder erneut verwendet oder aber in ein vorhandenes Fließgewässer abgegeben wird. Die Asche des Brennstoffes wird als Schlacke aus dem Brenneraum abgezogen und für die Weiterverwendung als Baustoff vorbereitet. Das gleiche gilt auch für den in der Rauchgasentschwefelung erzeugten Kraftwerkgips.

Vereinfachtes Diagramm eines Kohlekraftwerkes
Vereinfachtes Diagramm eines Kohlekraftwerkes

Steuerung der Abläufe

Leitstand eines modernen Kohlekraftwerks
Leitstand eines modernen Kohlekraftwerks

Sämtliche im Kohlekraftwerk anfallenden Informationen, wie beispielsweise die Messwerte, werden in der Leitwarte angezeigt und ausgewertet. Die Leitwarte ist ein geschlossener Raum mit Messinstrumenten zur Anzeige der Betriebszustände der einzelnen Kraftwerkskomponenten. Mit Schaltern und anderen Steuerorganen kann das Kraftwerkspersonal in den Betriebsablauf eingreifen, sofern das Kraftwerk nicht über eine automatische Regelung erfolgt. Die Eingriffe werden über digitale Datenübertragung an die zugehörigen Hilfsantriebe übermittelt und bewirken in teilweise großer Entfernung von der Leitwarte beispielsweise das Öffnen oder Schließen einer Armatur oder auch eine Veränderung der Zufuhr der Brennstoffe zur Feuerung.


Anfahrverhalten

Im Gegensatz zu den meisten Wasserkraftwerken muss ein Kohlekraftwerk angefahren werden, wenn die Anlage für einen längeren Zeitraum abgeschaltet wurde. Die folgende Tabelle gibt die dafür notwendige Zeitdauer wieder. Die Dauer des Vorganges deckt das Zünden des ersten Brenners bis zum Erreichen der Volllast ab.

Anfahrverhalten eines Kohlekraftwerkes
Startart Anfahrzeiten
Kaltstart nach < 72 h Stillstand 400 min
Warmstart nach < 48 h Stillstand 280 min
Heißstart nach < 8 h Stillstand 115 min

Verbesserung des Wirkungsgrades

Baustelle des Braunkohlekraftwerk mit optimierter Anlagentechnik (BoA) bei Grevenbroich
Baustelle des Braunkohlekraftwerk mit optimierter Anlagentechnik (BoA) bei Grevenbroich

Zur optimalen Ausnutzung der im Brennstoff gespeicherten Energie und zur Verbesserung des Wirkungsgrades werden im Kohlekraftwerk verschiedene Verfahren eingesetzt. Wie in jedem thermodynamischen Kreisprozess wird angestrebt, dass das Arbeitsmittel (hier: Wasserdampf) mit einer möglichst hohen Temperatur in die Dampfturbine eintritt und diese mit einer möglichst niedrigen Temperatur wieder verlässt. Die hohe Eintrittstemperatur wird durch ein einmaliges Überhitzen des Wasserdampfes erreicht, wobei der Dampf schon nach einem Teil seines Weges durch die Dampfturbine erneut wieder durch den Dampfkessel geleitet wird und ihm weitere Wärmenergie zugeführt wird. Die Grenze für die höchste Temperatur ist die Temperaturresistenz der verwendeten Stähle für die Rohre des Wasserrohrkessels. Die niedrige Austrittstemperatur des Dampfes wird durch einen ausreichend bemessenen Kondensator verwirklicht. Die niedrigst mögliche Temperatur ist die Eintrittstemperatur des Kühlwassers in den Kondensator. Als zusätzliche Maßnahme wird die Berohrung des Kondensators kontinuierlich durch das Kugelumlaufverfahren von Verschmutzungen befreit, da sich an dieser Stelle Verunreinigungen besonders negativ auf den gesamten Wirkungsgrad bemerkbar machen.

Der derzeitige Stand der Technik beim Wirkungsgrad wird vom Braunkohlekraftwerk mit optimierter Anlagentechnik (BoA) repräsentiert. In Niederaußem ist der erste Block in Betrieb, eine weitere Anlage mit zwei Kraftwerksblöcken befindet sich bei Neurath im Bau. Bei einer installierten Leistung von 2 x 1100 Megawatt wird ein Wirkungsgrad von mehr als 43 % erreicht. Allerdings werden durch die enormen Verbräuche des zugehörigen Tagebaubetriebs (Schaufelradbagger, Bandförderanlagen, elektrische Güterbahnen, Absetzer, Grundwasserhaltung) rund 10 % der erzeugten elektrischen Energie zur Aufrechterhaltung des Kraftwerkbetriebs benötigt.

Moderne Steinkohlekraftwerke erreichen elektrische Wirkungsgrade von rund 45 %. Die relativ geringen Energieaufwendungen zur Bereitstellung des Brennstoffs können im Gegensatz zum Braunkohlekraftwerk vernachlässigt werden.

Zukünftige Entwicklungen

Die technologische Weiterentwicklung der Kohlekraftwerke wird sich in den nächsten Jahrzehnten an ihrem Ausstoß von Kohlendioxid orientieren. Derzeit sind diverse Anlagen in der Versuchsphase, in denen eine Entfernung dieses Treibhausgases aus dem Rauchgas in der Erprobung sind. Es werden folgende Prinzipien der CO2-Abtrennung diskutiert:

Alle diese Verfahren beinhalten einen erheblichen Eigenbedarf innerhalb des Gesamtprozesses der Stromerzeugung. Modellrechnungen gehen von einem Wirkungsgradverlust von 10 bis 15% bei einem durchschnittlichen Kohlekraftwerk aus.

Die beim Prozess der CO2-Abtrennung gewonnenen Wertstoffe wie flüssiges Kohlendioxid oder der reine Kohlenstoff können an anderer Stelle verwendet werden. Geplant ist beispielsweise, das Kohlendioxid in der Erdölförderung zur Erhöhung der Lagerstättenenergie in den Untergrund zu verpressen.

Diese Lagerung von Kohlendioxid ist jedoch umstritten, da es zu Katastrophen kommen kann, falls das Kohlendioxid austritt (siehe auch: Nyos-See).

Kohlekraftwerke in der EU

Diese Tabelle zeigt die in der Europäischen Union in Kohlekraftwerken installierten Leistungen in Megawatt, gestaffelt nach Jahreszahlen.

In Kohlekraftwerke installierte Leistungen in MW
Land 1974 1980 1990 1999
Belgien 951 2.056 3.499 1.824
Dänemark 1.414 4.195 7.208 5.121
Deutschland 18.947 19.848 25.225 30.727
Finnland 1.150 2.682 2.782 2.705
Frankreich 9.100 12.905 11.530 10.728
Griechenland 0 0 0 2
Irland 16 15 869 868
Italien 533 2.187 3.505 3.675
Luxemburg 55 55 0 0
Niederlande 918 1.359 3.272 2.842
Österreich 33 16 831 802
Portugal 61 42 1.319 1.905
Schweden 50 50 719 719
Spanien 2.741 3.711 7.492 10.448
UK 47.837 44.022 39.990 33.563
EU15 83.697 93.144 108.241 105.928

Kostenstruktur eines typischen Kohlekraftwerkes

Die Tabelle zeigt die Kostenstruktur und weitere Kenndaten eines modernen Kohlekraftwerkes für Steinkohle.

Kostenkategorie Einheit Betrag
Installierte Bruttoleistung MW 600
Spezifischer Anlagenpreis /kW (brutto) 798
Absoluter Anlagenpreis Mio. € 478,8
Elektrischer Eigenbedarf % der Bruttoleistung 7,4
Elektrischer Eigenbedarf MW 44,4
Instandhaltung %/Jahr 1,5
Bedienungspersonal Personen 70
Personalkosten je Beschäftigten Euro/Jahr 70000
Hilfs- und Betriebsstoffe Euro/MWh 1,00
Brennstoffpreis 1) Euro/t SKE 55,00
Brennstoffkosten 1) Cent/kWh 2,1
Stromgestehungskosten 1) Cent/kWh ~ 4

1) Stand Q4 / 2005, ohne Steinkohlesubventionen

Quelle: Studie Referenzkraftwerk Nordrhein-Westfalen, VGB PowerTech e.V., Essen. Siehe auch: www.vgb.org

Weitere Informationen zum Thema: "www.vgb.org/data/vgborg_/InfoService/vgb-zahlen-fakten-2006-DE-low-CLEAN.pdf"

Beispiele für Kohlekraftwerke

Siehe auch

Weblinks

Literatur

  • Strom aus Steinkohle, Stand der Kraftwerkstechnik, Herausgegeben von der STEAG Aktiengesellschaft Essen, Springer-Verlag 1988, ISBN 3-540-50134-7
Andere Sprachen
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu