ראשוניים תאומים
מתוך ויקיפדיה, האנציקלופדיה החופשית
בתורת המספרים, ראשוניים תאומים הם זוג מספרים ראשוניים שההפרש ביניהם הוא 2. פרט למספר הראשוני 2, כל שאר הראשוניים הם אי-זוגיים, ולכן המרחק בין כל שניים מהם מוכרח להיות זוגי. אם כן, 2 הוא ההפרש הקטן ביותר האפשרי. דוגמאות לתאומים כאלה: 5 ו- 7; 11 ו- 13; 821 ו- 823.
בשנת 2002 גילה Papp את צמד הראשוניים . נכון לשנת 2004, אלו הם הראשוניים התאומים הגדולים ביותר הידועים.
השאלה האם קיימים אינסוף ראשוניים תאומים היא אחת מהשאלות הפתוחות הוותיקות בתורת המספרים. זהו התוכן של השערת המספרים הראשוניים התאומים.
צורה חזקה של השערת זו היא השערת הארדי-ליטלווד, העוסקת במספרם של הראשוניים התאומים הקטנים מגבול x. לפי ההשערה, מספר הזוגות שווה, בקירוב, לקבוע מסוים, כפול ; במלים אחרות, הסיכוי שמספרים יהיו שניהם ראשוניים הוא קבוע, כפול . ההשערה תואמת למשפט המספרים הראשוניים, שלפיו הסיכוי של כל אחד מן המספרים האלה להיות ראשוני הוא בקירוב .
על ידי פיתוח גרסה כמותית לנפת ארטוסתנס, הוכיח המתמטיקאי הנורבגי ברון בשנת 1919, שמספר הראשוניים התאומים עד x קטן מ- . מעובדה זו נובע שסכום כל ההופכיים של הראשוניים התאומים מתכנס לגבול סופי (ראה קבוע ברון), שלא כמו סכום ההפכיים של כל המספרים הראשוניים (שהוא אינסופי). אפשר להסיק מכך שהראשוניים התאומים אינם מאוד שכיחים, אבל התוצאה של ברון אינה מראה שמספרם סופי (והדעה המקובלת היא להיפך, שמספרם אינסופי).
שלישייה של מספרים תאומים, כלומר מספרים p , p+2 , p+4 ששלושתם ראשוניים, יש רק אחת, השלישייה 3, 5, 7. כדי להוכיח שאין שלישיות נוספות, נניח שיש שלישייה כזו. אם p הוא ראשוני גדול מ-3, הרי השארית בחלוקתו ב-3 היא 1 או 2. אם השארית היא 1, הרי p+2 מתחלק ב-3 ללא שארית, ואם השארית היא 2, הרי p+4 מתחלק ב-3 ללא שארית. מאידך, ישנן שלשות מורכבות יותר כגון p, p+2, p+6 או p, p+4, p+6, שאבריהן יכולים להיות כולם ראשוניים (לדוגמה, 11,13,17 במקרה הראשון, 37,41,43 במקרה השני). אנשי תורת המספרים משערים שאם התבנית אינה בלתי-אפשרית מסיבה טריוויאלית (כגון החלוקה ב- 3 שהוסברה לעיל), אז ישנם אינסוף מקרים שבהם כל הרכיבים הם ראשוניים. זוהי הכללה של השערת המספרים הראשוניים התאומים.
[עריכה] 35 הזוגות הראשונים של ראשוניים תאומים
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)
[עריכה] ראו גם
- מספר ראשוני של סופי ז'רמיין
[עריכה] קישורים חיצוניים
- כריס קלדוול: מספרים ראשוניים (באנגלית).
- שביאר גורדון, פסקל סבה: מבוא למספרים ראשונים תאומים וקבוע ברון (באנגלית).