New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Frumtala - Wikipedia, frjálsa alfræðiritið

Frumtala

Úr Wikipediu, frjálsa alfræðiritinu

Frumtölur (eða prímtölur) eru allar þær náttúrulegu tölur sem ekki er unnt að deila með öðrum tölum en henni sjálfri og 1. [1] Talan 1 er ekki skilgreind sem frumtala þar sem hún er eining og gengur því upp í sérhverja náttúrulega tölu.

Efnisyfirlit

[breyta] Nokkrar staðreyndir um frumtölur

  • Þær frumtölur sem eru lægri en 100 eru: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
  • Til eru óendanlega margar frumtölur. Ef svo væri ekki getum við látið P = \{ p_1, p_2, \dots, p_n \} tákna mengi allra frumtalna. Skoðum töluna t = p_1 \cdot p_2 \cdot \dots \cdot p_n + 1. Sérhver frumtala í P skilar þá 1 í leif þegar henni er deilt í t. En þá er t annað hvort frumtala sjálf sem er stærri en þær sem eru í P, eða þá að hún er margfeldi frumtalna sem eru ekki meðal þeirra í P. Hvoru tveggja er mótsögn, svo það fær ekki staðist að P sé mengi allra frumtalna.
  • Það hefur ekki fundist lokuð formúla fyrir frumtölur. Stærsta frumtala sem fundist hefur er 44. Mersenne frumtalan, talan 232582657 − 1, sem fannst í september 2006. (Upplýsingar frá apríl 2007).
  • Frumtölur sem eru samliggjandi oddatölur, eins og til dæmis 17 og 19, 71 og 73 o.s.frv., eru nefndar tvíburafrumtölur (enska: twin primes).
  • Tala í tugakerfinu sem endar á 5 eða sléttri tölu getur ekki verið frumtala (nema hún sé 2 og 5). Ef þversumma tölunnar er deilanleg með 3 þá er talan sjálf deilanleg með 3. (T.d. er talan 5217 deilanleg með 3 því 5+2+1+7=15 er deilanleg með 3).
  • Sé deilt með 6 í frumtölu, sem er stærri en 5, verður afgangurinn alltaf annað hvort 1 eða 5. Því ef leifin er slétt er talan sjálf slétt, og ef afgangurinn er 3 má deila tölunni sjálfri með 3.
  • Litla setning Fermats segir að ef p er frumtala, og a er ósamþátta p, þá er a^{p-1} \equiv 1 (\text{mod } p). Hún er gjarnan notuð til að sýna fram á að tala sé ekki frumtala. Almennari útgáfa hennar er notuð til að sýna fram á virkni RSA dulkóðunarkerfisins.

[breyta] Vöxtur frumtalna og umfang reikninga

  • Ef við lítum á p_1, p_2, \dots sem óendanlega runu frumtalna, þá segir frumtalnasetningin okkur að frumtalan pn sé u.þ.b. n \cdot \ln(n), og að matið batnar eftir því sem n stækkar.
  • Þær eru mikið notaðar í dulkóðun. Sem dæmi eru þær undirstaða öryggis RSA reikniritsins, þar sem það að þátta tölu er talið vera erfitt og núverandi aðferðir ganga út á að hreinlega prófa alla mögulega þætti (sjá hér að neðan).
  • Hægt er að ganga í skugga um hvort tala t sé frumtala með því að prófa að deila sérhverri náttúrulega tölu k \leq \sqrt{t} í t og athuga hvort leifin sé 0. Það nægir að athuga frumtölur á þessu bili ef þær upplýsingar eru til staðar. Sem dæmi er hægt að athuga hvort talan 143 sé frumtala með því skoða hvort einhver frumtalnanna 2, 3, 5, 7 og 11 gangi upp í 143. Við skoðum ekki 13 þar sem \sqrt{t} < 12. Í ljós kemur að 11 gengur 13 sinnum upp í 143, svo talan er ekki frumtala. Ástæðan fyrir því að kvarðatrótin nægir er sú að ef einhver tala b > \sqrt{t} gengur upp í t, þá er talan a = \frac t b < \frac{t}{\sqrt{t}} = \sqrt{t} svo leit okkar fram að kvarðatrótinni af t myndi finna þáttinn a.
  • Reikniritið að ofan tekur O(\sqrt{n}) tíma sem er ekki margliða í stærð inntaksins (þ.e. fjöldi bita í n). Árið 2004 sýndu þrír nemendur við IIT Kanpur, þeir Agrawal, Kayal og Saxena, fram á að unnt er að athuga hvort tala sé frumtala eða ekki í tíma sem er margliða í fjölda bita í n.

[breyta] Neðanmálsgreinar

  1. Einnig kemur fyrir að orðið „frumtala“ sé notað um fjöldatölur en slík orðanotkun er á undanhaldi. Orðið „prímtala“ er þó ætíð notað um tölur af því tagi sem eru til umfjöllunar hér.
  • Manindra Agrawal, Neeraj Kayal og Nitin Saxena. "PRIMES is in P", Annals of Mathematics, 160(2)(2004) bls.781-793.

[breyta] Tenglar

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu