Spirale
aus Wikipedia, der freien Enzyklopädie
Eine Spirale ist eine Kurve, die um einen zentralen Punkt oder Achse verläuft und, je nach Laufrichtung, sich immer weiter von diesem/r entfernt oder annähert.
Inhaltsverzeichnis |
[Bearbeiten] Spirale oder Schraube
Die Spirale wird des öfteren mit der völlig anders geformten Schraube verwechselt.
Während die prototypische Spirale ein Gebilde in der Ebene ist, wie zum Beispiel die Rillen einer Schallplatte, oder die Arme einer Spiralgalaxie, ist sowohl die Schraube als auch der Wendelbohrer ein räumliches Gebilde entlang des Hofs eines Zylinders.
Im ersten Bild liegt eine archimedische Spirale als schwarze Kurve unten auf dem Boden, während die Schraube als grüne Kurve an der Außenwandung des Zylinders sichtbar ist.
Die Überlagerungskurve von Spirale und Schraube, die im ersten Bild rot eingezeichnet ist, wird als konische Spirale oder kegelförmige Raumspirale bezeichnet.
[Bearbeiten] Spiraltypen
[Bearbeiten] Ebene Spiralen
Man kann diese Spiralen mathematisch am besten als Koordinatengleichungen im ebenen Polarkoordinatensystem beschreiben, wobei r als Funktion von Φ dargestellt wird; Φ läuft im Allgemeinen bis unendlich anstatt nur bis 2π. Im Folgenden sind jeweils eine Formel für r(Φ) und die Länge s der Spirale von Φ = 0 weg angegeben.
- Die archimedische Spirale entsteht z. B. beim Aufwickeln eines gleichmäßig dicken Teppichs.
- Die logarithmische Spirale entsteht z. B. beim Wachstum von Schneckenhäusern.
- Länge vom Koordinatenursprung () weg:
- Die hyperbolische Spirale, schwarze Kurve oben im zweiten Bild, sieht man z. B. beim senkrechten Blick durch eine Wendeltreppe (siehe auch die Zentralprojektion).
- In dieser Gleichung läuft die Spirale mit wachsendem Φ von außen (unendlich ferner Punkt bei Φ=0) nach innen; die Entfernung auf der Spirale von einem beliebigen Punkt der Spirale bis zum Koordinatenursprung ist jedoch auch unendlich, deshalb ist hier die Entfernung zwischen zwei Punkten mit den Winkeln Φ und Θ angegeben.
- Es existieren noch einige weitere mathematische Funktionen, die ebene Spiralen erzeugen.
[Bearbeiten] Dreidimensionale Spiralen
Konische Spirale entlang eines Kreises. Eine Überlagerung von Schraube und Spirale, entlang des Mantels eines Kegels, dessen Mittellinie zu einem Kreis gekrümmt ist. Frei nach M. C. Escher, siehe in den unten stehenden Links.
Der dieser Zeichnung zugrunde liegende Kegelmantel erinnert an das Ouroboros-Motiv, und kann als ein Torus mit stetig zunehmenden Ringdurchmesser aufgefasst werden:
Die Archimedische Kugelspirale (linkes Bild):
Bei einer archimedischen Spirale vergrößert sich der Abstand zum Mittelpunkt linear zum anwachsenden Winkel ihres Umlaufes. Auf einer Kugeloberfläche wird dieser Abstand als der Winkelabstand von einem ihrer Pole gemessen. Daher ist die Archimedische Kugelspirale eine Linie von endlicher Länge, und nicht mit der Loxodrome (rechtes Bild) identisch.
[Bearbeiten] Spiralen in der Natur
Viele Pflanzen weisen in Ihrem Bauplan spiralige Strukturen auf. Die Anordnung dieser Bio-Spiralen wiederum erfolgt in den allermeisten Fällen als Fibonacci-Folge.
[Bearbeiten] Demoskopie
Hier wurde die Metapher „Schweigespirale“ von Elisabeth Noelle-Neumann benutzt, um ein bestimmtes gegenseitiges sich Aufschaukeln von sozialen Reaktionen zu erklären und zugleich zu bekämpfen: In der öffentlichen Meinung würden gewisse Minderheitenstandpunkte so nachdrücklich vertreten, dass die Mehrheit zögere, sich überhaupt zu äußern, darauf würde die Minderheit immer diktatorischer und die Mehrheit immer stummer usw. Empirisch ist dieser Zusammenhang sehr schwer zu überprüfen: Wie will man alle Schweigenden (die statistische Grundgesamtheit) ermitteln und auf dieses Motiv hin untersuchen (zum Reden bringen)?
[Bearbeiten] Siehe auch
[Bearbeiten] Weblinks
- http://www.mathematische-basteleien.de/spirale.htm
- http://www.mcescher.com/ - Gallery - Recognition and Success - Spher Spirals 1958
- Beispiele für Spiralen im Pflanzenreich
Commons: Spirale – Bilder, Videos und/oder Audiodateien |