Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Racine carrée de deux - Wikipédia

Racine carrée de deux

Un article de Wikipédia, l'encyclopédie libre.

L'hypoténuse d'un triangle rectangle isocèle de côté 1 vaut √2.
L'hypoténuse d'un triangle rectangle isocèle de côté 1 vaut √2.

La racine carrée de deux, notée \sqrt{2} ou 2^{\frac{1}{2}}, est un nombre réel remarquable en mathématiques et valant approximativement 1,4142. \sqrt{2} est le nombre réel positif qui, lorsqu'il est multiplié par lui-même, donne le nombre 2, autrement dit \sqrt{2} \times \sqrt{2} = 2.

Il est possible que \sqrt{2} ait été le premier nombre reconnu comme irrationnel, c'est-à-dire ne pouvant être exprimé comme une fraction de nombres entiers. La découverte des nombres irrationnels est généralement attribuée à l'école de Pythagore, dont l'un des membres aurait produit la toute première démonstration d'irrationalité. Sans pouvoir affirmer avec certitude que celle-ci concernait \sqrt{2}, le fait que les propriétés de ce nombre soient connues et étudiées depuis très longtemps, et aussi qu'il est particulièrement simple d'en démontrer l'irrationalité, est un argument pour faire de \sqrt{2} « le premier irrationnel Â».

Le nombre intervient dans des applications de la vie courante :

Sommaire

[masquer]

[modifier] Eléments introductifs

[modifier] Définition, notation et prononciation

  • √2 se prononce racine carrée de 2 ; se prononçait aussi "radical de deux".
  • √2 est le nombre réel positif[1] qui multiplié par lui même donne 2. Autrement dit, le nombre x tel que x²=2. (√2)²=√2 x √2=2.
  • √2 se note également 21/2 : deux puissance un demi. (notation unicode : 2½)

[modifier] Premières propriétés

Si les mécanismes[2] entrant en jeu dans la définition de la racine carrée de deux peuvent être compris très tôt, l'évaluation de la solution est bien plus complexe.

La recherche d'une valeur de √2 sous forme de fraction (ratio) est vaine. Ce constat est à l'origine d'un des problèmes fondementaux des mathématiques. √2 est un nombre irrationnel. C'est en outre le premier nombre dont l'irrationalité a été prouvée.

[modifier] Existence et construction

Quelques constructions classiques de √2.

  1. Le Théorème de Pythagore énonce que dans un triangle ABC rectangle en C, AB²=AC²+BC². Si ce triangle est un carré coupé en diagonale, la mesure de ses côtés est ramenable à l'unité, AC=BC=1, d'où AB²=1+1=2 => AB=√2.
  2. Dans un carré, la diagonale est multiple de √2 par rapport aux côtés.
  3. On peut construire un carré de surface 2. L'aire d'un carré est égale au produit de ses côtés (x.x=x²). La racine de sa surface du carré est son côté et par construction, celui-ci est égal à √2. x²=2 => x=√2~1,4142. Cette construction est à l'origine de l'expression racine carrée.
  4. La duplication du carré est une construction géométrique qui vérifie l'existence du nombre √2.

[modifier] Étymologie

L'expression racine carrée est issue de la notation géométrique européenne qui prévalait avant la notation algébrique, et plus particulièrement de l'une des constructions de √2 présentée au paragraphe précédant.

Les problèmes mathématiques ont souvent été présentés sous forme géométriques avant d'être rammenés à des expressions algébriques.

[modifier] Valeur approchée

√2 vaut approximativement 1,414 213 562 373 09.

Le calcul d'une valeur approchante de √2 a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d'extraction de racines carrées. En informatique, ces recherches se sont poursuivies afin d'optimiser ces algorithmes : réduire les temps de calcul et la consommation de mémoire[3] afin d'utiliser ces outils dans des domaines aussi variés que l'animation vectorielle, la musique ou les statistiques[4] .

[modifier] √2 dans la vie courante

[modifier] Format de papier

Le rapport longueur/largeur d'une feuille de format A est une bonne approximation de √2.
Le rapport longueur/largeur d'une feuille de format A est une bonne approximation de √2.
Article détaillé : format de papier.

Les formats de papier A, B et C de la norme ISO 216, d'emploi courant hors de l'Amérique du Nord, ont été conçus pour vérifier une propriété remarquable : une feuille coupée en deux parties égales par la largeur, produit deux feuilles homothétiques à l'original ; c'est-à-dire avec le même rapport longueur/largeur. L'aire étant diminuée d'un facteur 2, ceci n'est possible que si ce rapport vaut √2 ; dans la pratique, les dimensions sont arrondies.

Ci-dessous sont données les valeurs approximatives des formats A0 à A5 en fonction de \sqrt{2}.

Valeurs approximatives des dimensions des formats A0 à A5 exprimées en fonction de √2. Dans la pratique, les dimensions sont arrondies.
format longueur (m) largeur (m) aire (m²)
A0 √√2 √√2/√2 1
A1 √√2/√2 √√2/2 1/2
A2 √√2/2 √√2/(2√2) 1/4
A3 √√2/(2√2) √√2/4 1/8
A4 √√2/4 √√2/(4√2) 1/16

Dans la pratique les dimensions sont arrondies. Les séries B et C diffèrent de la série A respectivement d'un facteur \sqrt{\sqrt{2}} et \sqrt{\sqrt{\sqrt{2}}}.

Les facteurs d'agrandissement de 200%, 141%, 71%, 50% proposés par les photocopieuses sont des approximations de (\sqrt{2})^n qui permettent le passage à des formats de papier supérieurs ou inférieurs — que ce soit physiquement ou par impression de 2n pages par feuille.

[modifier] Musique

Article détaillé : gamme tempérée.

En 1691, l'Allemand Andreas Werckmeister eut l'idée de créer une gamme à intervalles égaux, connue sous le nom gamme tempérée. Cette gamme résolvait quelques problèmes de la gamme pythagoricienne, en particulier la fausseté flagrante de certains intervalles (quinte du loup, tierce) ; de fait un tempérament proche du tempérament égal devait être utilisé sur les instruments à clavier et à frettes vers le XVIe siècle.

La gamme se construit de cette manière : le rapport de fréquences entre les notes extrêmes de l'octave est 2 ; et la gamme est divisée en douze-demi tons de rapports de fréquence égaux f. Le rapport de fréquences entre la note la plus haute et la plus basse est donf f12, qui vaut, comme indiqué précédemment, 2. Le demi-ton a ainsi un rapport f = 2^{\frac{1}{12}}. Dans ce système, la quarte augmentée (do–fa#) et la quinte diminuée (do-solâ™­), égaux et valant six demi-tons, ont un rapport de fréquences de \sqrt{2}.

Rapports de fréquences des notes de la gamme tempérée par rapport à la note la plus basse.
do do# ré ré# mi fa fa# sol sol# la la# si do
1 21/12 21/6 21/4 21/3 25/12 √2 27/12 22/3 23/4 25/6 211/12 2

[modifier] Électricité

Tension sinusoïdale : valeur efficace.
Tension sinusoïdale : valeur efficace.
Article détaillé : tension efficace.

En électricité, la tension efficace Ueff d'un courant alternatif sinusoïdal — par exemple les 110 V ou 220 V du courant domestique — est reliée à l'amplitude de la tension Umax par

Umax = Ueff√2, noté aussi Û=U√2,

soit, dans la plupart des applications courantes :

Ueff ≅ 0,7 Umax.

Cela est valable plus généralement pour la valeur efficace des grandeurs linéaires d'une onde sinusoïdale.

[modifier] Photographie

Diaphragme contrôlant l'ouverture d'un appareil photo.
Diaphragme contrôlant l'ouverture d'un appareil photo.
Article détaillé : Ouverture (photographie).

Les ouvertures des appareils photographiques suivent la séquence normalisée f/1,4, f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22, f/32, etc. Le rapport entre deux ouvertures conséqutives est une valeur proche √2, qui a été choisie de sorte à ce que le rapport de flux lumineux soit dans un rapport 2 (flux = diamètre²) . En diminuant d'un « cran Â» l'ouverture on double le temps de pose nécessaire ou diminue d'un facteur 2 la sensibilité de la pellicule requise.[5]

Dans la pratique, l'ouverture indiquée est un arrondi ; l'ouverture réelle peut coller au plus proche de \sqrt{2}[6]. Il existe des subdivisions sur les appareils modernes, souvent dans des rapports \sqrt{\sqrt{2}} ou \sqrt{2}^{\frac{1}{3}}.

Lien entre ouverture, diamètre du diaphrage et flux lumineux reçu à pose et sensibilités fixés.
Ouverture f/1,4 f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22 f/32
Diamètre d d/√2 d/2 d/2√2 d/4 d/4√2 d/8 d/8√2 d/16 d/16√2
Flux I I/2 I/4 I/8 I/16 I/32 I/64 I/128 I/256 I/512

[modifier] Histoire

[modifier] Babylone

Schéma de la tablette YBC 7289.
Schéma de la tablette YBC 7289.
Article détaillé : YBC 7289.

La première représentation connue de ce nombre date du début du IIe millénaire av. J.-C.. Il apparaît sur la tablette babylonienne YBC 7289 datant de -1700 ± 100. Il s'agit du tracé d'un carré avec ses diagonales, avec les mesures des segments et accompagné d'une valeur approchée de √2 écrite en système sexagésimal cunéiforme :

1  204  501  10,

ce qui signifie très probablement 1 + 24/60 + 51/60² + 10/60³ — l'absence de zéro et de virgule dans la numération babylonienne rend la notation positionnelle ambiguë — soit environ 1,41421296. Il s'agit d'une valeur approchée au six dix-millionièmes de \sqrt{2}, ce qui indique qu'elle avait été obtenue de manière algorithmique, car une telle précision de mesure leur était hors de portée.

On sait d'ailleurs que les Babyloniens savaient extraire des racines carrées d'entiers non carrés en exploitant des formules du type de la méthode de Héron.[7] (Ces formules sont un cas particulier de la méthode de Newton).

[modifier] Grèce antique

Les pythagoriciens attribuèrent une grande importance à la notion de grandeurs commensurables et s'y tinrent longtemps comme à un principe philosophique. Ils ne pouvaient concevoir qu'un nombre ne soit pas un rapport d'entiers, le rapportant le plus souvent à des figures géométriques. Mais d'après Aristote (IVe siècle av. J.-C.), ce sont les pythagoriciens eux-mêmes qui démontrèrent pour la première fois que \sqrt{2} est irrationnel, à la fin du Ve siècle av. J.-C., à savoir qu'il ne peut s'écrire comme le rapport de deux grandeurs commensurables. Cette démonstration de l'incommensurabilité de \sqrt{2}, supposée pour une grande part géométrique, est souvent attribuée à Pythagore, mais elle aurait en fait été rédigée par l'un de ses disciples. Une légende rapporte que, parce que contraire aux pensées de Pythagore sur le caractère absolu des nombres, la découverte d'un nombre irrationnel jeta un trouble au sein de l'école et la démonstration fut dissimulée. Une autre légende mise en doute par Proclus raconte qu'Hippase de Métaponte fut jeté à la mer et mourut noyé pour avoir révélé l'existence de cette démonstration. Beaucoup de doutes subsistent sur ces récits. D'ailleurs certains émettent l'hypothèse qu'il ne s'agissait pas de \sqrt{2} mais plutôt du nombre d'or (1+\sqrt{5})/2. Platon rapporte dans son Théétète, que Théodore utilisait une méthode générale pour démontrer l'incommensurabilité à un des racines carrées de 3, 5, ... 17 mais sans nous la révéler. Ainsi l'incommensurabilité de \sqrt{2} à 1, pourrait bien avoir tout de même été établie par les pythagoriciens. La plus ancienne preuve de l'incommensurabilité de \sqrt{2}\, avec 1 qui ait traversé le temps, figure dans les textes d'Aristote (Aristote, Analytiques Postérieurs I), qui affirme que si la diagonale du carré était commensurable avec le côté, alors un même nombre serait pair et impair. Une autre démonstration se trouve dans le livre 10 des Éléments d'Euclide et repose sur la méthode d'antiphérèse, aussi appelée méthode de soustraction réciproque.

On suppose que l'algorithme de Théon de Smyrne, inspiré de la méthode d'antiphérèse, aurait été utilisé à l'époque pour calculer des valeurs approchées de \sqrt{2}. Il permet, en considérant les rapports de termes des deux suites introduites par Théon et en utilisant le principe de l'encadrement, d'obtenir des valeurs approchées de \sqrt{2} comme 3/2, 7/5, ou 17/12.

Précisons qu'il faudra attendre Diophante pour que \sqrt{2} et les autres irrationnels, ainsi que les rationnels soient considérés comme des nombres à part entière, algébriquement parlant.

[modifier] Monde indien

Article détaillé : Mathématiques indiennes.

On peut trouver dans le Åšulbasutra de Baudhayana une approximation de \sqrt{2}\, antérieure au Ve siècle av. J.-C. [8].

[modifier] Monde arabo-musulman

Article détaillé : mathématiques arabes.

Le monde arabo-musulman connaissait l'irrationalité √2, au moins par traduction des textes grecs. Les travaux de Muhammad ibn Musa al-Khwarizmi introduisent la notation algébrique la généralise les problèmes et équations du second ordre [1]. Un de ses successeurs, Abu Kamil systématise la manipulation des irrationnels. Ces deux mathématiciens développent et perfectionnent les algorithmes d'approximation des irrationnels, dont √2.

[modifier] Occident

[modifier] Géométrie

[modifier] Duplication du carré

En rouge le carré initial En pointillé, les tracés de Socrate  En bleu, la réponse de l'esclave
En rouge le carré initial
En pointillé, les tracés de Socrate
En bleu, la réponse de l'esclave

\sqrt{2} intervient dans la duplication du carré. C'est à dire la résolution du problème :

Un carré étant donné, comment construire un carré dont la surface est double ?

Ce problème, dont la résolution géométrique est relativement simple, offre un double intérêt historique : d'une part, il a servi de base à une démarche pédagogique célèbre racontée dans le Ménon de Platon (vers 400 avant l'ère commune). D'autre part, il a poussé les mathématiciens à s'intéresser à un problème qui semblait similaire mais qui se révéla insoluble dans le cadre de la construction à la règle et au compas : la duplication du cube.

Dans le Ménon de Platon, Socrate cherche à prouver à Ménon que la vertu ne s'enseigne pas mais est intrinsèque. Il pose à un esclave le problème de la duplication du carré et va l'amener à trouver « seul Â» la solution du problème. La démarche de l'esclave suit une voie assez classique. Il propose de multiplier le côté par deux. Socrate l'amène à trouver qu'alors l'aire est multipliée par 4. L'esclave propose ensuite de considérer un carré dont le côté est la moyenne arithmétique du côté initial et de son double. Socrate l'amène à trouver que l'aire vaut alors les 9/4 de l'aire initiale. L'esclave arrive à une impasse : il ne peut trouver un nombre solution du problème. Socrate le guide alors vers la voie géométrique, il reproduit 3 carrés semblables au premier et trace une diagonale. L'esclave poursuit le raisonnement et construit enfin la solution au problème. D'après Socrate, l'esclave a retrouvé en lui une vérité qu'il possédait ; la démarche employée ressortit à la maïeutique.

On peut donc affirmer :

Le rapport entre le côté et la diagonale d'un carré est \sqrt{2}

Autrement dit, si d est la longueur de la diagonale et c celle du côté

d = c \sqrt{2}

[modifier] Triangle rectangle isocèle

Triangle rectangle isocèle de côté 1.
Triangle rectangle isocèle de côté 1.

DIAGONALE D'UN TRIANGLE RECTANGLE ISOCÈLE — Dans un triangle rectangle, si les deux côtés adjacents à l'angle droit ont une longueur égale à l'unité, l'hypoténuse a pour longueur de √2. Ce résultat est un cas particulier du théorème de Pythagore.

La théorème de Pythagore affirme en effet que dans un triangle rectangle, le carré de l'hypoténuse — côté opposé à l'angle droit — est égal à la somme des carrés des côtés adjacents à l'angle droit. Sur la figure ci-contre, cela se traduit par

a2 + b2 = c2

Sur le triangle ci-contre cela donne ainsi

12 + 12 = c2.

Cela veut dire que le carré de l'hypoténuse c2 vaut 2. On en déduit que l'hypoténuse elle-même est de longueur

c = \sqrt{2}.

[modifier] Trigonométrie

√2/2 = sin 45° = cos 45°
√2/2 = sin 45° = cos 45°

La moitié de √2 est une quantité commune en géométrie et en trigonométrie, car le vecteur unitaire qui fait un angle de 45° avec l'axe des abscisses, dans un repère orthonormé, a pour coordonnées :

\left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right)

Ce nombre satisfait cette relation :

√2/2 = 1/√2 = cos 45° = sin 45°

[modifier] Construction de √2 à la règle et au compas

Construction à la règle et au compas.
Construction à la règle et au compas.

Comme toutes les racines carrées de nombre entier, \sqrt{2} est constructible à la règle et au compas ; a contrario, ce n'est pas le cas de la racine cubique de 2, par exemple.

Étant donné un segment AB de longueur unité, voici les différentes étapes pour construire un segment de longueur \sqrt{2} avec une règle non graduée et un compas :

  1. Tracer le symétrique B' de B par rapport à A
    • Tracer le cercle C1 de centre A et de rayon AB, il coupe la demi-droite ]BA) en B'
  2. Tracer la médiatrice (AH) de [BB']
    • Tracer le cercle C2 de centre B et de rayon r > AB
    • Tracer le cercle C3 de centre B' et de rayon r, il coupe C2 en deux points, H et H'
    • Tracer le segment [AH] il intersecte C1 en un point C.

À cette étape le segment [BC] de longueur \sqrt{2} est construit.

[modifier] Construction de √2 au compas seul

Construction au compas seul
Construction au compas seul

Comme tout nombre constructible à la règle et au compas, \sqrt{2} est constructible au compas seul. Les étapes sont

  1. Tracer des sommets consécutifs B, G, H, I de l'hexagone régulier de centre A et de sommet B
    • Tracer le cercle C1 de centre A et de rayon AB
    • Tracer le cercle C2 de centre B et de rayon AB, il coupe C1 en deux points, soit G l'un d'entre eux
    • Tracer le cercle C3 de centre G et de rayon AB, il coupe C1 en B et H
    • Tracer le cercle C4 de centre H et de rayon AB, il coupe C1 en G et I
  2. Construire C tel que IC = IG = BH
    • Tracer le cercle C5 de centre I et de rayon IG
    • Tracer le cercle C6 de centre B et de rayon BH (= IG), il coupe C5 en C

À cette étape le segment [AC] de longueur \sqrt{2} est construit.

Éléments de démonstration : IC² = IG² = 3 d'après le théorème d'Al-Kashi dans le triangle IAG avec  = 120°. Par construction (C sur la médiatrice de AI) AC est perpendiculaire à AI et le théorème de Pythagore dans IAC donne AC² = 2..

[modifier] Propriétés mathématiques principales

[modifier] Irrationalité

Article détaillé : nombre irrationnel.

\sqrt{2} est un nombre irrationnel, c'est-à-dire qu'il n'est pas possible de l'écrire \sqrt{2} = \frac{p}{q}, c'est-à-dire sous la forme d'une fraction de deux nombres entiers p et q.

Anciennement, on parlait d'incommensurabilité de \scriptstyle{\sqrt{2}} et 1 : il n'existe pas d'unité u permettant de mesurer à la fois le côté d'un carré et sa diagonale ; ce qui se traduit mathématiquement par la proposition suivante : il n'existe pas p et q entiers tels que :

\sqrt{2} = pu et 1 = qu.

Ces deux formulations sont équivalentes.

Il existe de multiples démonstrations de l'irrationalité ; de part leur simplicité, elles sont souvent utilisées à des fins pédagogiques comme introduction à la théorie des nombres. Elles procèdent le plus souvent par l'absurde. L'incohérence typique est l'existence d'une descente infinie d'entiers naturels ou la simplification d'une fraction irréductible. La forme de la preuve peut utiliser des arguments purement arithmétiques ou utiliser une représentation géométrique.

Triangle isocèle rectangle à côtés entiers si  est rationel : une étape de descente infinie.
Triangle isocèle rectangle à côtés entiers si \sqrt{2} est rationel : une étape de descente infinie.

[modifier] Démonstration géométrique

On suppose \textstyle{\sqrt{2} = \frac{q}{p}} avec p et q entiers.

On construit un triangle AOB rectangle isocèle en O de côté OA = OB = p, son hypoténuse est ainsi AB = \scriptstyle{OA\sqrt{2}} = q.

On construit un cercle de centre A et de rayon AO ; il intersecte l'hypoténuse [AB] en B'. On construit un cercle de centre A et de rayon AB, il intersecte [AO) en C. On pose A' = B. On définit enfin le point O' comme le point d'intersection des droites (B'C) et (A'O). On obtient :

  • A'B' = AB - AO = q - p,
  • Donc on a : CO = AC - AO = AB - AO = q - p,
  • les points A, O et C jouent un rôle symétrique par rapport à A, B', A', de sorte que (AO') est un axe de symétrie ;
    • \scriptstyle{\widehat {A'B'O'}} est droit, \scriptstyle{\widehat {O'A'B'} =\widehat {ABO} = 45^\circ}, donc A'B'O' est isocèle rectangle.
  • B'O' = A'B' = q - p ,
  • Par symétrie, OO' = q - p,
  • A'O' = OB - OO' = p - (q - p) = 2p - q.

Le triangle A'B'O' est rectangle isocèle en B' de côté q - p et d'hypoténuse 2p - q, tous les deux entiers.

En continuant ainsi de suite, on obtient une descente infinie de triangles à côtés entiers AOB, A'O'B', etc. ce qui est absurde.

Donc \scriptstyle{\sqrt{2}} ne peut pas s'écrire \textstyle{\frac{q}{p}} avec p et q entiers.

Note : une autre version de la preuve ne nécessite pas l'argument de la descente infinie. On prend comme hypothèse la fraction irréductible \textstyle{\frac{p}{q}} ; le triangle A'O'B' donne (2p − q)/(q − p) de plus petits numérateurs et dénominateurs, ce qui est également absurde. Il faut toutefois noter que la possibilité de choisir une fraction sous forme irréductible repose sur la propriété de factorialité et donc in fine sur un argument de descente infinie.

[modifier] Démonstration arithmétique

On suppose \textstyle{\sqrt{2} = \frac{p}{q}} avec p et q entiers premiers entre eux.

Dans ce cas on peut écrire \scriptstyle{\sqrt{2}} sous forme de fraction irréductible, c'est-à-dire que p et q n'ont pas de facteur premier commun. Il en est donc de même pour p2 et q2, ce qui signifie que \textstyle{\frac{p^2}{q^2}} est une fraction sous sa forme irréductible. Une telle forme étant unique, l'égalité \textstyle{\frac{p^2}{q^2}}=\frac21 entraîne p2 = 2 et q2 = 1. La première de ces deux égalités est impossible pour p entier ; on a donc abouti à une contradiction.

Il en résulte que \sqrt{2} ne peut pas s'écrire \textstyle{\frac{p}{q}} avec p et q entiers premiers entre eux, c'est-à-dire que \sqrt{2} est irrationnel.

[modifier] Normalité

Article détaillé : nombre normal.

La normalité est un concept se basant sur la distribution des chiffres du développement décimal d'un nombre irrationnel, à savoir si tous les chiffres de 0 à 9 apparaissent dans ce développement et avec la même fréquence. En ce qui concerne \sqrt{2}\,, on ignore s'il est normal dans le système décimal ou dans toute autre base de numération.

[modifier] Degré algébrique et degré d'irrationalité

Article détaillé : irrationnel quadratique.

\sqrt{2}\, est un nombre algébrique de degré 2, dit irrationnel quadratique, car solution de l'équation polynômiale du second degré à coefficients entiers x² − 2 = 0, mais d'aucune de degré 1 de par son irrationalité. On sait ainsi qu'il est difficilement approchable par une suite rationnelle pn/qn ; l'erreur est en mieux en

|√2 − pn/qn| ~ 1/qn².

Comme pour tout nombre algébrique irrationnel, son degré d'irrationalité est 2.

[modifier] Proportion d'argent

Article détaillé : proportion d'argent.

La proportion d'argent est une constante mathématique obtenue à partir de \sqrt{2}\, :

\Delta = 1 + \sqrt{2} = (1 - \sqrt{2})^{-1}\,

Elle peut aussi être écrite comme une fraction continue :

Δ = [2; 2, 2, 2, …]

On peut écrire les puissance de la proportion d'argent ainsi :

\Delta^{n + 1} = u_{n}\Delta + u_{n - 1}\,

où la suite (un) est définie par récurrence :

u_{n + 2} = 2 u_{n + 1} + u_n\,

Note : il y a une ressemblance avec les propriétés de la proportion dorée, dont les puissances successives s'expriment en fonction de \phi\,, \frac{1}{\phi}\, et d'une suite récurrente double.

[modifier] Développement en fraction continue

Article détaillé : fraction continue.

√2 est relié à un certain nombre de développements en fractions continues périodiques, par propriété des irrationnels quadratiques.

√2 est relié au développement en fraction continue suivant

a\sqrt{2} - b = \frac1{2b + \frac1{2b + \frac1{2b + \cdots}}}\,

pour 2a² − b² = 1, (a, b) entiers strictement positifs. On notera ce développement de manière plus concise :

a√2 − b = [0; 2b, 2b, 2b, …]

On en tire les valeurs suivantes de √2 :

√2 = [1; 2, 2, 2, …].
√2 = 1/5 × [7; 14, 14, 14, …]
√2 = 1/29 × [41; 82, 82, 82, …]

Plus généralement, \sqrt{2} se relie à la fraction continue généralisée suivante :

a\sqrt{2} - b = \frac k{2b + \frac k{2b + \frac k{2b + \cdots}}}\,

notée sous forme plus concise

a√2 − b = [0; k, 2b; k, 2b; k, 2b; …]

avec k = 2a² − b², et (a, b) entiers strictement positifs. On en déduit les quelques développements de \sqrt{2}\, suivants :

√2 = 1/2 × [3; -1, 6; -1, 6; -1, 6; …]
√2 = 1/12 × [17; -1, 34; -1, 34, -1, 34; …]
√2 = 1/70 × [90; -1, 180; -1, 180, -1, 180; …]

Éléments de démonstration : soit la suite (un) définie par la relation de récurrence un + 1 = −k/(2b + un) et εn = |un − (a√2 − b)|. Alors on peut montrer que εn + 1 < Kεn, avec 1/|1 + 2b/(a√2 − b)| < K < 1 dans un voisinage de a√2 − b.

[modifier] Développements en série et produit infini

[modifier] Produits infinis

L'identité cos(π/4) = sin(π/4) = 1/√2 et la représentation en produit infini du sinus et du cosinus mènent aux développements suivants

\sqrt 2 = 2\prod_{k=0}^\infty \frac{(4k+1)(4k+3)}{(4k+2)^2} =  2 \left(1-\frac{1}{4}\right) \left(1-\frac{1}{36}\right) \left(1-\frac{1}{100}\right) \cdots
\sqrt{2} = \prod_{k=0}^\infty \frac{(4k+2)^2}{(4k+1)(4k+3)} = \left(\frac{2 \cdot 2}{1 \cdot 3}\right) \left(\frac{6 \cdot 6}{5 \cdot 7}\right) \left(\frac{10 \cdot 10}{9 \cdot 11}\right) \left(\frac{14 \cdot 14}{13 \cdot 15}\right) \cdots

Le dernier produit peut s'écrire de manière équivalente :

\sqrt{2} = \prod_{k=0}^\infty \left(1+\frac{1}{4k+1}\right) \left(1-\frac{1}{4k+3}\right) = \left(1+\frac{1}{1}\right) \left(1-\frac{1}{3}\right) \left(1+\frac{1}{5}\right) \left(1-\frac{1}{7}\right) \cdots.

[modifier] Séries

Le nombre peut aussi être évalué sous forme de série par le développement de Taylor d'une fonction trigonométrique en \left({\pi}/{4}\right) :

\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k}}{(2k)!}.
\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k+1}}{(2k+1)!}.

On peut aussi utiliser la fonction \sqrt{1+x}\, en 1:

\sqrt{2} = \sum_{k=0}^\infty (-1)^{k+1} \frac{\prod_{n=1}^{n=k-1} (2n-1)}{\prod_{n=1}^{n=k} 2n} =  1 + \frac{1}{2} - \frac{1}{2\cdot4} + \frac{1\cdot3}{2\cdot4\cdot6} - \frac{1\cdot3\cdot5}{2\cdot4\cdot6\cdot8} + \cdots.

La convergence de la dernière série peut être accélérée par la biais d'une transformation d'Euler pour donner :

\sqrt{2} = \sum_{k=0}^\infty \frac{(2k+1)!}{(k!)^2 2^{3k+1}} = \frac{1}{2} +\frac{3}{8} + \frac{15}{64} + \frac{35}{256} + \frac{315}{4096} + \frac{693}{16384} + \cdots.

[modifier] Méthodes numériques d'approximation

Les méthodes numériques d'approximation présentées ci-dessous sont destinées au calcul d'un nombre important de décimales. Elles se basent généralement sur une suite convergente de nombres rationnels ; ainsi l'itération s'affranchit du coût de calcul sur des nombres à virgule flottante — dont il faudrait en plus connaître la précision a priori. Les meilleures approximations par une suite rationnelle pn/qn donnent une erreur en 1/qn², une propriété de l'approximation diophantienne des irrationnels quadratiques.

[modifier] Méthodes à convergence linéaire

[modifier] Méthode de Théon de Smyrne

On doit à Théon de Smyrne ces deux suites (pn) et (qn) définies par les relations de récurrence :

pn + 1 = pn + 2qn
qn + 1 = pn + qn

Ces suites vérifient

pn² − 2qn² = (−1)n(p0² − 2q0²)

de sorte que pn/qn tend vers √2.

On ne sait pas si l'intention de Théon de Smyrne était de calculer une valeur approchée de √2.

[modifier] Solutions de l'équation diophantienne a²− 2b² = k

Les solutions entières de l'équation 2a² − b² = k sont générées par récurrence

ak + 1 = 3ak + 2bk
bk + 1 = 4ak + 3bk

à partir des valeurs initiales (a0, b0) = (1, 1) pour k = +1 et (2, 3) pour k = −1.

Cette méthode est déduite de celle de Théon : chaque itération de la présente correspond à deux itérations de celle-là. Ainsi, an/bn tend linéairement vers √2.

Les premières solutions sont :

  • k = 1 : (1, 1), (5, 7), (29, 41), (169, 239), (985, 1393).
  • k = -1 : (2, 3), (12, 17), (70, 90), (408, 577),

[modifier] Méthode de Théon généralisée

On se donne (a, b) solutions de l'équation diophantienne 2a² = b² + k = K, avec k = ±1. On peut alors écrire

√2 = a/b √[K/(K − k)]

La suite (pn/qn) donnée par

pn + 1 = (2K − k)pn + 2Kqn
qn + 1 = (2K − 2k)pn + (2K − k)qn

converge vers √[K/(K − 1)].

L'erreur vérifie

εn + 1 < εn 1/4(5K − k)² .

La convergence est donc linéaire : elle fait gagner un certain nombre de décimales à chaque itération.

Cette méthode correspond à une généralisation de la méthode de Théon au radical √[K/(K − k) ; de plus, chaque itération correspond à deux itérations de la méthode de Théon.

Premières approximations de √2 = 17/12 √(288/289) par approximation linéaire de √(288/289). Les paramètres sont a = 17, b = 12, K = 288, k = −1, εn + 1 < 7,5 × 10-7εn.
itération valeur fractionnaire décimales exactes
0 1 1
1 19601/13860 1,41421356
2 22619537/15994428 1,41421356237309
3 26102926097/18457556052 1,41421356237309504880
4 30122754096401/21300003689580 1,41421356237309504880168872

[modifier] Développement en fraction continue

Une autre méthode consiste à approcher a√2 − b par sa fraction continuée généralisée pour (a, b) solutions de l'équation diophantienne 2a² = b² + k, avec k = ± 1 :

a√2 − b = [0; k, 2b; k, 2b; k, 2k, …].

m√2 − n est approximé à l'aide de la suite (pn/qn) déterminée par la relation de récurrence

pn + 1 = qn
qn + 1 = 2bqn + kpn

L'erreur vérifie asymptotiquement

εn + 1 < |a√2 − b|/(2b − 1) εn
Premières approximations de √2 par approximation linéaire de 169√2 − 239. Les paramètres sont a = 169, b = 239, k = 1, εn + 1 ~ 4 × 10−6 εn.
itération valeur fractionnaire décimales exactes
0 1 1
1 114243/80782 1,414213562
2 54608393/38613965 1,41421356237309
3 26102926097/18457556052 1,41421356237309504880
4 12477253282759/8822750406821 1,4142135623730950488016887

[modifier] Développement de Taylor

On se donne (a, b) solutions de l'équation diophantienne 2a² = b² + k = K, avec k = ±1. On peut alors écrire le développement de Taylor de √[K/(K − k)]

√[K/(K − k)] = 1 + 1/2 (k/K) + (1×3)/(2­×4) (k/K)² + (1×3×5)/(2×4×6) (k/K)³ + …

et utiliser √2 = a/b √[K/(K − k)]

Dans le cas √2 = 17/12 √(49/50), ce développement se simplifie de façon remarquable comme l'a fait remarquer Leonhard Euler en 1755 :

√2 = 7/5 [1 + 1/100 + (1×3)(1×2) + (1×3×5)/(1×2×3) + … ]
Approximation √2 = 239/169 √(57122/57121) par le développement de Taylor du radical fractionnaire. Les paramètres sont a = 239, b = 169, K = 57122, k = 1.
itération valeur fractionnaire décimales exactes
0 1 1
1 239/169 1,4142
2 27304077/19306898 1,414213562
3 26102697611/18457394488 1,41421356237309
4 2982024380475863/ 2108609661098096 1,41421356237309505880

[modifier] Dichotomie

Il est possible d'approcher √2 par bisection. Cette méthode est de convergence linéaire lente : on gagne trois décimales à chaque dizaine d'itérations.

[modifier] Méthode à convergence quadratique

Articles détaillés : méthode de Héron et méthode de Newton.

La méthode de Newton appliquée à la fonction racine carrée permet de calculer une valeur approchée de √2 de manière itérative avec une convergence quadratique, c'est-à-dire doublant le nombre de décimales à chaque itération. La récurrence a la forme

un + 1 = un/2 + 1/un

Cet algorithme s'appelle méthode de Héron ou méthode babylonienne car il semble que ce soit celle utilisée par les babyloniens pour trouver des valeurs approchées de racines carrées. .

Si l'on s'intéresse aux fractions successives à partir d'une valeur initiale p0 et q0, la récurrence sur le numérateur et le dénominateur sont

pn + 1 = pn² + 2qn²
qn + 1 = 2pnqn
Premières approximations de √2 données par la méthode de Newton.
itération valeur fractionnaire décimales exactes
0 1 1
1 3/2 1
2 17/12 1,41
3 577/408 1,41421
4 665857/470832 1,41421356237
5 886731088897/627013566048 1,41421356237309504880168

[modifier] Méthodes cubiques

Articles détaillés : méthode de Halley et itération de Householder.

[modifier] Méthode de Halley

Un exemple de méthode cubique s'obtient par l'itération de Halley. Elle cherche le zéro de f(x) = x² − 2 en utilisant les deux premières dérivées. La solution itérative est

xn + 1 = xn × (xn² + 6)/(3xn² + 2)

soit en posant xn = pn/qn :

pn + 1 = pn(pn² + 6qn²)
qn + 1 = qn(3pn² + 2qn²)

Cette méthode est de convergence cubique : le nombre de décimales exactes triple à chaque itération.

Premières approximations de √2 données par la méthode cubique.
itération valeur fractionnaire décimales exactes
0 1 1
1 75 1,4
2 1393/985 1,414213
3 10812186007/7645370045 1,414213562373095048
4 — 1,4142135623730950488
016887242096980785696
718753769480731766797

[modifier] Méthode de Householder

L'itération de Householder appliquée à f(x) = 1/x² − 1/√2 donne une suite convergeant vers 1/√2 :

xn + 1 = xn + xn/8 × (2xn² − 1)(6xn² − 7)

[modifier] Méthodes d'ordre supérieur

On utilise une méthode de Newton modifiée[9] pour trouver le zéro de f(x) = 1/x² − 1/2. Cela donne la suite récurrente :

xn + 1 = xn + xn/16 × (8hn + 6hn² + 5hn³)

avec

hn = 1 − xn²/2

Cette méthode est de convergence quartique, i.e. d'ordre 4 : le nombre de décimales exactes quadruple à chaque itération.

Premières approximations de √2 données par la méthode quartique.
itération valeur fractionnaire décimales exactes
0 3/2 1
1 23169/214 1,414
2 57367317478181003155381859082363/2105 1,41421356237309
3 — 1,41421356237309
5048801688724209
6980785696718753
76948073176679737

Il existe des méthodes d'ordre supérieur[10], notamment parmi les méthodes de Householder.

[modifier] Voir aussi

[modifier] Liens internes

[modifier] Liens externes

[modifier] Bibliographie

[modifier] Références

  1. ↑ Dans R : (-√2)²=2.
  2. ↑ Il s'agit du produit, du nombre deux, et du concept d'égalité
  3. ↑ La plupart des logiciels mathématiques, sur ordinateurs ou sur machines à calculer, utilisent des approximations pré-établies de cette constante - au moins jusqu'à un certain rang.
  4. ↑ √2 intervient dans la loi normale
  5. ↑ (en) A Tedious Explanation of the f/stop, Matthew Cole, 2005 (visté le 29 août 2006)
  6. ↑ (en) f/Calc Manual
  7. ↑ (en)  [pdf]Eleanor Robson & David Fowler, Square root approximations in Old Babylonian mathematics : YBC 7289 in context, Historia Mathematica, 25, pp. 366-378, 1998.
  8. ↑ Voir (fr) Quelques aspects arithmétiques du commentaire de Dvarakanatha sur la géométrie du Sulbasutra, Jean-Michel Delire, Oriens-Occidens, n°4 (2002) ; (en) Square Roots in the Sulbasutra, avid W. Henderson ; (fr) La Diagonale du carré, 5.2
  9. ↑ (en) Newton's iteration, Xavier Gourdon & Pascal Sebah, 2001, visité le 24 août 2006
  10. ↑ (en) Pythagoras' Constant √2, Xavier Gourdon & Pascal Sebah, 2001, visité le 24 août 2006
Portail des mathématiques â€“ Accédez aux articles de Wikipédia concernant les mathématiques.
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu