Radium
Z Wikipedie, otevřené encyklopedie
Radium je 6. z řady kovů alkalických zemin, silně radioaktivní prvek, vznikající rozpadem uranu a thoria.
Obsah |
[editovat] Základní fyzikálně - chemické vlastnosti
Chemická značka Ra, (lat. Radium)
Relativní atomová hmotnost 226,0254 amu
Hustota přibližně 5 g/cm3
Teplota tání 700 °C, tj. 973 K
Teplota varu 1 737 °C, tj. 2 010 K
Mimořádně silný radioaktivní zářič, který vzniká jako produkt thoriové i uranových rozpadových řad a dále se radioaktivně přeměňuje. Jednotlivé izotopy radia vyzařují všechny druhy radioaktivního záření – paprsky alfa, beta i gama.
Soli radia barví plamen sytě červeně.
Bylo objeveno roku 1898 Marií Curie-Skłodowskou a jejím manželem Pierem v jáchymovském smolinci. Teprve v roce 1910 izolovali nepatrné množství čistého prvku Maria Curie-Skłodowska a Andre Debiern.
[editovat] Výskyt v přírodě
Protože všechny izotopy radia podléhají poměrně rychle dalšímu radioaktivnímu rozpadu, je obsah radia v přírodě mizivě malý. Všechny lokality s vyšším obsahem radia jsou přitom spojeny se zvýšeným výskytem uranu a thoria.
Kromě oblasti Jáchymova jsou známé lokality se zvýšeným obsahem radia např. v Kolorádu (carnotitové písky), v africkém Kongu a v oblasti Velkých jezer v Kanadě.
[editovat] Izotopy radia a radon
V současné době je známo 25 izotopů radia, všechny jsou nestabilní a podléhají další radioaktivní přeměně. Nejvýznamnějšími jsou izotopy 226Ra s poločasem rozpadu 1602 let a 228Ra s poločasem 6,7 roku.
Při své radioaktivní přeměně vyzařují atomy radia intenzivní alfa, beta i gama záření, navíc je však značná část z nich prekurzory dalšího nebezpečného prvku - radonu. Tento plynný prvek pak může z místa svého vzniku šířit vzduchem a při dlouhodobém styku zvyšuje riziko vzniku plicní rakoviny u exponovaných osob. Proto je nutno při stavbě obytných budov v oblastech se zvýšeným výskytem uranu a thoria v geologickém podloží dobře izolovat základy stavby a zamezit tak možnému pronikání podzemního radonu do budovy.
[editovat] Příprava, využití a rizika
Elementární radium lze připravit elektrolytickým rozkladem chloridu radnatého. Průmyslově se však již nikde nevyrábí a to jak pro svůj mimořádně nízký výskyt, tak pro zanedbatelný praktický význam a rizikovost práce s tímto materiálem.
V dřívějších dobách se při radioterapeutické léčbě rakovinných nádorů vpravovala do nádoru malá množství solí radia. Protože je známo, že rakovinné buňky jsou přednostně likvidovány radioaktivním zářením, vedl tento postup k zahubení většiny rakovinou napadených buněk ve svém okolí. V současné době se pro tuto léčbu používá spíše uměle připravených radioizotopů jako 60Co a 137Cs.
Je znám otřesný případ smrtelného rakovinného onemocnění stovek žen, které pracovaly v továrně vyrábějící náramkové hodinky. Na ciferníky těchto hodinek se tenkým štětem nanášelo barvivo s obsahem radia, které pak ve tmě světélkovalo (luminiscence). Dělnice občas olízly špičku štětce, aby ji udržely dokonale ostrou. Mnoho z nich v následujících letech zemřelo na rakovinu hrtanu, štítné žlázy a nádory v ústní dutině.
Existuje podezření, že i objevitelka radia Marie Curie-Sklodowská zemřela na následky dennodenního styku se zvýšenými koncentracemi radia při pokusech o jeho izolaci.
[editovat] Cena Radia
Lékařské využívání v první polovině 20. století vedlo k obrovskému růstu cen radia. Produkce pouhých 2 g ročně stačila před 1. světovou válkou k prosperitě uranových dolů v Jáchymově. Po nálezu kargonitu v Utahu se světová výroba zvýšila na 10 g. V roce 1921 věnovaly americké ženy Marii Curie 1g radia v ceně 250 000 dolarů. V roce 1922 byla nalezena ložiska v Kongu a výroba stoupla během tří let na 25 g. V roce 1929 už klesla cena radia na 50 000 dolarů. Objev ložisek uranu v roce 1930 v Kanadě pak stlačil cenu několikanásobně níže. Dnes není radium prakticky užíváno a o jeho případné ceně lze tedy jen spekulovat.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
H | (přehled) | He | |||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo |
*Lanthanoidy | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
**Aktinoidy | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | ||
|
|||||||||||||||||
Skupiny prvků: Kovy - Nekovy - Polokovy - Blok s - Blok p - Blok d - Blok f | |||||||||||||||||
|