Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Trigonometria - Wikipédia

Trigonometria

Z Wikipédie

Trigonometria (z gréčtiny trigona = tri uhly a metro = merať) je disciplína matematiky zaoberajúca sa uhlami, trojuholníkmi a trigonometrickými funkciami ako sínus, kosínus a tangens. Trigonometria má blízky vzťah ku geometrii, aj keď nepanuje všeobecná dohoda aký presne; pre niektorých je trigonometria len pododbor geometrie.

[úprava] Raná história

Počiatky trigonometrie sa datujú až ku kultúram starovekého Egyptu a civilizáciam Babylončanov a údolia rieky Indus pred 3000 rokmi. Indickí matematici mali na dobrej úrovni rozvinuté algebraické výpočty s premennými, ktoré využívali v astronómii a medzi ktoré patrila aj trigonometria.

Grécky matematik Hipparchos okolo roku 150 pred Kr. napísal trigonometrické tabuľky pre riešenie problémov s trojuholníkmi.

Iný Grécky matematik, Ptolemaios okolo roku 100 ďalej rozvinul trigonometrický aparát.

[úprava] Trigonometria dnes

Dnes existuje enormné množstvo aplikácií trigonometrie. Medzi dôležité patri technika trinagulácie, ktorá sa používa v astronómii na meranie vzdieleností susedných hviezd, v geografii na meranie vzdialeností medzi orietančými bodmi a satelitných navigačných systémoch. Ďalšie aplikácie trigonometrie nachádzame v astronómii (a teda aj v navigácii na oceánoch, lietadlách a vo vesmíre), hudobnej teórii, akustike, optike, analýze finančných trhov, elektronike, teórii pravdepodobnosti, štatistike, biológii, medicínskej diagnostike (počítačová tomografia a ultrazuk), farmácii, chémii, teórii čísel (a teda aj v kryptológii), seizmológii, meteorológii, oceánografii, v mnoho fyzikálnych vedách, geodézii, architektúre, fonetike, ekonómiii, počítačovej grafike, kartografii, kryštalografii a v mnohých iných.

[úprava] O trigonometrii

Hovoríme, že dva trojuholníky sú podobné, ak jeden môžeme zíkať z druhého roztiahnutím. Toto je ekvivalentné len tomu a tomu prípadu, kedy sú si zodpovedajúce uhly rovné a nastáva napríklad vtedy, keď dva trojuholníky zdieľajú ten istých uhol a strany oproti tomu uhlu sú rovnobežné. Rozhodujúca skutočnosť je, že podobné trojuholníky majú rovnaký pomer strán. Napríklad ak najdhlšia strana trojuholníka je dvakrát taká dlhá ako najdlhšia strana nejakého k nemu podobného trojuholníka, potom aj nakrajtšia strana bude dvakrát taká dlhá ako najkratšia strana podobného trojuholníka (podobne so zvyšnou stranou). Takisto pomer najdlhšej a najkratšej strany prvého trojuholníka bude rovnaký ako pomer najdlhšej a najkratšej strany druhého trojuholníka.

Pravouhlý trojuholník

Využitím týchto faktov môžeme definovať trigonometrické funkcie, začínajúc pravouhlými trojuholníkmi (trojuholníkmi s pravým uhlom). Najdlhšia strana v pravouhlých trojuholníkoch je vždy strana oproti pravému uhlu.

Pretože súčet uhlom v trojuholníku je 180 stupňov alebo π radiánov, najväčší uhol v pravouhlých trojuholníkoch je vždy pravý uhol.

Najdlhšia strana v týchto trojuholníkoch je preto strana oproti pravému uhlu a nazýva sa prepona.

Vyberme si dva ľubovoľné pravouhlé trojuholníky, ktoré zdieľajú nepravý uhol A. Tieto trojuholíky bude podobné a pomer strán oproti A (protiľahlých k A) k preponám bude teda rovnaký. Keďže prepona je najdlhšia strana, bude to vždy číslo medzi 0 a 1, ktoré závisí len na A, toto číslo nazývame sínusom uhla A. Analogicky môžeme definovať kosínus uhla A ako pomer strany priľahlej k A a prepony.

\sin A = {\mathrm{proti\check{l}ahl\acute{a}} \over \mathrm{prepona}}  \qquad \cos A = {\mathrm{pri\check{l}ahl\acute{a}} \over \mathrm{prepona}}

Tieto dve fukcie môžeme považovať za základné trigonometrické funkcie. Ostatné funkcie definujeme ako pomery ostatných strán pravouhlých trojuholníkov, ale dajú sa vyjadriť pomocou sínusu a kosínusu. Sú to tangens, sekans, kotangens a kosekans.

\tan A = {\sin A \over \cos A} = {\mathrm{proti\check{l}ahl\acute{a}} \over \mathrm{pri\check{l}ahl\acute{a}}}   \qquad \sec A = {1 \over \cos A}   = {\mathrm{prepona} \over \mathrm{pri\check{l}ahl\acute{a}}}
\cot A = {\cos A \over \sin A} = {\mathrm{pri\check{l}ahl\acute{a}} \over \mathrm{proti\check{l}ahl\acute{a}}}  \qquad \csc A = {1 \over \sin A}   = {\mathrm{prepona} \over \mathrm{proti\check{l}ahl\acute{a}}}

Takto sme definovali trigonometrické funkcie pre uhly medzi 0 a 90 stupňami (0 až π/2 radiánov). Použitím jednotkovej kružnice ich môžeme rozšíriť na všetky kladné a záporné arugmenty (pozri trigonometrické funkcie).

Hneď ako vieme počítať funkcie sínus a kosínus, môžeme dostať odpovede na takmer všetky otázky o ľubovoľných uhloch použitím sínusovej vety a kosínusovej vety'. Tieto vety sa dajú použiť na vypočítanie uhlov a strán ľubovoľných trojuhloníkov hneď ako poznáme dve strany a uhol alebo dva uhly a stranu alebo tri strany.

Niektorí matematickí historici si myslia, že trigonometria bola pôvodne rozpracovaná pre potreby zostrojovania a používania slnečných hodín (otázky okolo nich sú tradičné príklady v starých knihách).

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu