Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions จำนวนจริง - วิกิพีเดีย

จำนวนจริง

จากวิกิพีเดีย สารานุกรมเสรี

บทความนี้มีลิงก์แทรกในบทความที่ข้ามไปภาษาอื่นโดยเป็นลิงก์สีฟ้าอ่อน
โดยผู้เขียนใส่ไว้เพื่อสะดวกในการเขียน และควรแก้ลิงก์ภาษาอื่นเป็นข้อความธรรมดา เมื่อมีลิงก์ภาษาไทยที่ถูกต้อง หรือเห็นควร เพื่อไม่ให้ผู้อ่านสับสน

จำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จริง (real analysis)

สารบัญ

[แก้] คุณสมบัติและการนำไปใช้

มีหลักเกณฑ์ในการแบ่งจำนวนจริงอยู่หลายเกณฑ์ เช่น จำนวนตรรกยะ หรือ จำนวนอตรรกยะ; จำนวนพีชคณิต (algebraic number) หรือ จำนวนอดิศัย; และ จำนวนบวก จำนวนลบ หรือ ศูนย์

จำนวนจริงแทนปริมาณที่ต่อเนื่องกัน โดยทฤษฎีอาจแทนได้ด้วยทศนิยมไม่รู้จบ และมักจะเขียนในรูปเช่น 324.823211247… จุดสามจุด ระบุว่ายังมีหลักต่อๆไปอีก ไม่ว่าจะยาวเพียงใดก็ตาม

การวัดในวิทยาศาสตร์กายภาพเกือบทั้งหมดจะเป็นการประมาณค่าสู่จำนวนจริง การเขียนในรูปทศนิยม (ซึ่งเป็นจำนวนตรรกยะที่สามารถเขียนเป็นอัตราส่วนที่มีตัวส่วนชัดเจน) ไม่เพียงแต่ทำให้กระชับ แต่ยังทำให้สามารถเข้าใจถึงจำนวนจริงที่แทนได้ในระดับหนึ่งอีกด้วย

จำนวนจริงจำนวนหนึ่งจะกล่าวได้ว่าเป็นจำนวนที่คำนวณได้ (computable) ถ้ามีขั้นตอนวิธีที่สามารถให้ได้ตัวเลขแทนออกมา เนื่องจากมีจำนวนขั้นตอนวิธีนับได้ (countably infinite) แต่มีจำนวนของจำนวนจริงนับไม่ได้ จำนวนจริงส่วนมากจึงไม่เป็นจำนวนที่คำนวณได้ กลุ่มลัทธิเค้าโครง (constructivists) ยอมรับการมีตัวตนของจำนวนที่คำนวณได้เท่านั้น เซตของจำนวนที่ให้นิยามได้นั้นใหญ่กว่า แต่ก็ยังนับได้

ส่วนมากคอมพิวเตอร์เพียงประมาณค่าของจำนวนจริงเท่านั้น โดยทั่วไปแล้ว คอมพิวเตอร์สามารถแทนค่าจำนวนตรรกยะเพียงกลุ่มหนึ่งได้อย่างแม่นยำโดยใช้ตัวเลขจุดลอยตัวหรือตัวเลขจุดตรึง จำนวนตรรกยะเหล่านี้ใช้เป็นค่าประมาณของจำนวนจริงข้างเคียงอื่นๆ เลขคณิตความละเอียดไม่แน่นอน (arbitrary-precision arithmetic) เป็นขั้นตอนในการแทนจำนวนตรรกยะโดยจำกัดเพียงหน่วยความจำที่มี แต่โดยทั่วไปจะใช้จำนวนของบิตความละเอียดคงที่กำหนดโดยขนาดของรีจิสเตอร์หน่วยประมวลผล (processor register) นอกเหนือจากจำนวนตรรกยะเหล่านี้ ระบบพีชคณิตคอมพิวเตอร์สามารถจัดการจำนวนอตรรกยะจำนวนมาก (นับได้) อย่างแม่นยำโดยบันทึกรูปแบบเชิงพีชคณิต (เช่น "sqrt(2)") แทนค่าประมาณตรรกยะ

นักคณิตสาสตร์ใช้สัญลักษณ์ R (หรือ \Bbb{R} - อักษร R ในแบบอักษรblackboard bold) แทนเซตของจำนวนจริง สัญกรณ์ Rn แทนปริภูมิ n มิติของจำนวนจริง เช่น สมาชิกตัวหนึ่งจาก R3 ประกอบด้วยจำนวนจริงสามจำนวนและระบุตำแหน่งบนปริภูมิสามมิติ

[แก้] นิยาม

[แก้] การสร้างจากจำนวนตรรกยะ

จำนวนจริงสามารถสร้างเป็นส่วนสมบูรณ์ของจำนวนตรรกยะ สำหรับรายละเอียดและการสร้างจำนวนจริงวิธีอื่นๆดูที่ construction of real numbers (การสร้างจำนวนจริง)

[แก้] วิธีสัจพจน์

ให้ R แทนเซตของจำนวนจริงทั้งหมด แล้ว

  • เซต R เป็นฟีลด์ หมายความว่ามีการนิยามการบวกและการคูณ และมีคุณสมบัติตามปกติ
  • ฟีลด์ R เป็นฟีลด์อันดับ หมายความว่ามีอันดับเชิงเส้น (total order) ≥ ซึ่งสำหรับทุกจำนวนจริง x y และ z:
    • ถ้า xy แล้ว x + zy + z
    • ถ้า x ≥ 0 และ y ≥ 0 แล้ว xy ≥ 0
  • อันดับนั้นมีความบริบูรณ์เดเดคินท์ (Dedekind-complete) กล่าวคือทุกสับเซตที่ไม่ใช่เซตว่าง S ของ R ซึ่งมีขอบเขตบน ใน R มี ขอบเขตบนน้อยสุด ใน R

คุณสมบัติสุดท้ายนี้เป็นตัวแบ่งแยกจำนวนจริงออกจากจำนวนตรรกยะ ตัวอย่างเช่น เซตของจำนวนตรรกยะที่มีกำลังสองน้อยกว่า 2 มีขอบเขตบน (เช่น 1.5) แต่ไม่มีขอบเขตบนน้อยสุดที่เป็นจำนวนตรรกยะ เพราะว่ารากที่สองของ 2 ไม่เป็นจำนวนตรรกยะ

จำนวนจริงนั้นมีคุณสมบัติข้างต้นเป็นเอกลักษณ์ พูดอย่างถูกต้องได้ว่า ถ้ามีฟีลด์อันดับที่มีความบริบูรณ์เดเดคินท์ 2 ฟีลด์ R1 และ R2 จะมีสมสัณฐานฟีลด์ที่เป็นเอกลักษณ์จาก R1 ไปยัง R2 ทำให้เราสามารถมองว่าทั้งคู่เป็นวัตถุเดียวกัน

[แก้] คุณสมบัติ

[แก้] ความบริบูรณ์

เหตุผลหลักในการแนะนำจำนวนจริงก็เพราะว่าจำนวนจริงมีลิมิต พูดอย่างเป็นหลักการแล้ว จำนวนจริงมีความบริบูรณ์ (โดยนัยของ ปริภูมิอิงระยะทาง หรือ ปริภูมิเอกรูป ซึ่งต่างจากความบริบูรณ์เดเดคินท์เกี่ยวกับอันดับในส่วนที่แล้ว) มีความหมายดังต่อไปนี้

ลำดับ (xn) ของจำนวนจริงจะเรียกว่า ลำดับโคชี ถ้าสำหรับ ε > 0 ใดๆ มีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − xm| น้อยกว่า ε โดยที่ n และ m มากกว่า N และอาจกล่าวได้ว่าลำดับเป็นลำดับโคชีโคชีถ้าสมาชิก xn ของมันในที่สุดเข้าใกล้กันเพียงพอ

ลำดับ (xn) ลู่เข้าสู่ลิมิต x ถ้าสำหรับ ε > 0 ใดๆมีจำนวนเต็ม N (อาจขึ้นอยู่กับ ε) ซึ่งระยะทาง |xn − x| น้อยกว่า ε โดยที่ n มากกว่า N และอาจกล่าวได้ว่าลำดับมีลิมิต x ถ้าสมาชิกของมันในที่สุดเข้าใกล้ x เพียงพอ

เป็นเรื่องง่ายที่จะเห็นว่าทุกลำดับลู่เข้าเป็นลำดับโคชี ข้อเท็จจริงที่สำคัญหนึ่งเกี่ยวกับจำนวนจริงคือบทกลับของมันก็เป็นจริงเช่นกัน :

ลำดับโคชีทุกลำดับของจำนวนจริงลู่เข้า

นั่นก็คือ จำนวนจริงนั้นบริบูรณ์

สังเกตว่าจำนวนตรรกยะนั้นไม่บริบูรณ์ เช่น ลำดับ (1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) เป็นลำดับโคชีแต่ไม่ลู่เข้าสู่จำนวนตรรกยะจำนวนใดจำนวนหนึ่ง (ในทางกลับกัน ในระบบจำนวนจริง มันลู่เข้าสู่รากที่สองของ 2)

การมีอยู่ของลิมิตของลำดับโคชีทำให้แคลคูลัสใช้การได้ รวมไปถึงการประยุกต์มากมายของมันด้วย การทดสอบเชิงตัวเลขมาตรฐานเพื่อระบุว่าลำดับนั้นมีลิมิตหรือไม่คือการทดสอบว่ามันเป็นลำดับโคชีหรือไม่ ถ้าเราไม่ทราบลิมิตเหล่านั้นล่วงหน้า

ตัวอย่างเช่น อนุกรมพื้นฐานของฟังก์ชันเลขชี้กำลัง

\mathrm{e}^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}

ลู่เข้าสู่จำนวนจริงจำนวนหนึ่งเพราะว่าสำหรับทุกค่าของ x ผลรวม

\sum_{n=N}^{M} \frac{x^n}{n!}

สามารถทำให้มีค่าน้อยลงเพียงพอโดยเลือก N ที่มีค่ามากเพียงพอ นี่พิสูจน์ว่าลำดับนี้เป็นลำดับโคชี ดังนั้นเรารู้ว่าลำดับลู่เข้าแม้กระทั่งเราไม่รู้ว่าลิมิตคืออะไร


จำนวนจริง เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น
ข้อมูลเกี่ยวกับ จำนวนจริง ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu