New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Trigonometria - Wikipédia

Trigonometria

A Wikipédiából, a szabad lexikonból.

Trigonometria (az ógörög τρίγωνος / trigonosz - "háromszög", és μέτρον / metron - "mérés" szavakból) a matematika egy ága, mely a síkgeometriában a derékszögű háromszögek oldalai és szögei közötti összefüggésekkel foglalkozik. A gömbi háromszögeket a gömbi trigonometria tanulmányozza. A derékszögű háromszög oldalai és szögei közötti összefüggést a trigonometrikus függvények írják le, a trigonometria feladatai közé tatozik ezek tulajdonságainak vizsgálata és az ezeken alapuló számítások.

Tartalomjegyzék

[szerkesztés] Alapelvek

Két derékszögű háromszög hasonlóságát teljesen meghatározza egyik szögük nagysága, így oldalaik aránya mindig megegyezik, függetlenül hosszuktól. Ezeket az arányokat hagyományosan az ismert (például A szög) szögfüggvényeivel írják le:

  • A szinusz függvény (sin) a szöggel szemben lévő a befogó és a c átfogó hányadosa,
  • A koszinusz függvény (cos) a szög melletti b befogó és a c átfogó hányadosa,
  • A tangens függvény a szöggel szemben lévő a befogó és a szög melletti b befogó hányadosa.

Átfogó a derékszöggel szembeni oldal, befogó pedig a másik két oldal egy derékszögű háromszögben.

\sin A=\frac{a}{c}    \cos A=\frac{b}{c}    \tan A=\frac{a}{b}=\frac{\sin A}{\cos A}

A függvények reciprokait koszekáns (csc), szekáns (sec), illetve kotangens (ctg). Az inverz trigonometrikus függvények: arkuszszinusz (arc sin), arkuszkoszinusz (arc cos) és arkusztangens (arc tg). Ezek között a függvények között fennálló összefüggések a trigonometriai összefüggések.

Ezekkel a függvényekkel egy három adatával meghatározott tettszőleges háromszög hiányzó méretei (oldalhosszúságai és szögei) kiszámíthatók a szinusztétel és a koszinusztétel segítségével. Ezek az összefüggések használhatók a geometria minden területén, mivel minden sokszög véges számú háromszögre bontható.

A fenti definíciók csak 0 és 90° között (0 és π/2 radián között) értelmezhetők. Az egységsugarú kört alkalmazva a definíció kiterjeszthető az összes pozitív és negatív argumentumra (l. trigonometrikus függvények). A trigonometrikus függvények periódikus függvények, 180° (π radián) vagy 360° (2π radián) periodicitással. Ez azt jelenti, hogy ismétlődnek a fenti értékekkel.


[szerkesztés] Számolás trigonometrikus függvényekkel

A trigonometrikus függvényekről az elsők között készültek matematikai táblázatok. Ilyen függvénytáblákat matematikai segédkönyvként használtáék a tanulók, akik megtanulták azt is, hogyan kell interpolációt használni a táblázatban elérhetőnél nagyobb pontosság elérésére. A logarléc szintén tartalmazott egy vagy több skálát a szögfüggvények használatához.

Manapság a tudományos zsebszámológépeken a megfelelő gomb lenyomásával érhetők el a szögfüggvények (sin, cos és tg) és inverz függvényeik. A függvények argumentuma akár fok, akár radián lehet. A legtöbb számítógépes programnyelv rendelkezik függvénykönyvtárakkal, melyek többek között szögfüggvényeket is tartalmaznak. Olyan interaktív számítógépes eszközök, mint például az MS Excel, szintén támogatja a szögfüggvényeket. A személyi számítógépek mikroprocesszorának lebegőpontos egysége beépített utasításkészlettel rendelkezik szögfüggvények számításához.

[szerkesztés] A trigonometria korai törénete

A trigonometria táblája, Cyclopaedia, 1728.
A trigonometria táblája, Cyclopaedia, 1728.

A trigonometriát valószínűleg asztronómiai célokra találták fel. A trigonometria kezdeteit az ókori Egyiptom, Mezopotámia és az Indus völgyi civilizációig lehet követni több, mint 4000 évvel ezelőttig. A fokokban, percekben és másodpercekben történő szögmérés a babiloni hatvanas számrendszerből ered.

A trigonometria alkalmazásának első irásos említése a hellenizmus korában élt görög matematikustól, Hipparkhosztól származik kb. I.e. 150-ből, aki függvény táblát készített a sinus függvényre háromszögek számításához. Ptolemaiosz továbbfejlesztette a trigonometriai számításokat I.u. 100. körül.

Az Indiában írt Sulba Sutrák I. e. 800 és I. e. 500 között pontosan számolta ki a π/4 (45°) értékét, melyet 1/√2-ként adott meg.

Az ókori szingalézek, amikor víztározókat építettek Anuradhapura királyságban, trigonometriát használtak a vízáram gradiensének számításához.

Aryabhata indiai matematikus 499-ben szinusz és koszinusz függvénytáblát készített. A szinuszt zyanak, a koszinuszt kotizyanak nevezte, és otkram zya volt az inverz szinusz neve, valamint bevezette az 1-cosα függvényt is.

Egy mások indiai matematikus, Brahmagupta 628-ban szinusz értékek számításához a Newton-Stirling formulához hasonló interpolációt használt.

A 10. században Abul Wáfa perzsa matematikus és asztronómus bevezette a tangens függvényt és a szögfüggvénytáblázatok kiszámításához új módszert talált fel. Felállította a szögösszegezés képleteit vagyis például sin (a + b)-t, és felfedezte a szinusz képletet a gömbi geometriában:

\frac{\sin(A)}{\sin(a)} = \frac{\sin(B)}{\sin(b)} = \frac{\sin(C)}{\sin(c)}

A 10. század végén és a 11. század elején Ibn Yunus egyiptomi asztronómus több igen pontos trigonometriai számítást hajtott végre és bemutatta a cos(a)cos(b) = (1 / 2)[cos(a + b) + cos(ab)] összefüggést is.

Az indiai matematikusok élen jártak az algebra használatában a csillagászati számításoknál, beleértve a trigonometriát is. I. e. 1350-1200 körül Lagadha volt az első, aki geometriát és trigonometriát használt a csillagászatban a Vedanga Jyotisha művében. Omar Khajjám perzsa matematikus és költő (1048-1131) összekapcsolta a trigonometriát a közelítő számítások elméletével abból a célból, hogy geometriai problémákkal kapcsolatos algebrai egyenleteket oldjon meg.

Khajjám meghatározta a x3 + 200x = 20x2 + 2000 harmadfokú egyenlet pozitív gyökét úgy, hogy egy hiperbola és egy kör metszéspontját vizsgálta. A megoldáshoz közelítő numerikus eljárást használt, melynek során trigonometrikus táblázatban interpolált.

Az indiai Bhaskara 1150-ben részletes módszert közölt arra, hogyan kell szinusz táblázatot szerkeszteni bármely szögre és néhány összefüggést közült szinusz és koszinusz függvényre. Bhaskara a gömbi trigonometriát is továbbfejlesztette.

Valószínűleg Nasir al-Din Tusi perzsa matematikus volt az első a 13. században, aki a trigonometriát önálló matematikai diszciplínaként tárgyalta.

Bartholemaeus Pitiscus matematikus 1595-ben megjelent fontos munkájában használta először a "trigonometria" szót.

[szerkesztés] Külső hivatkozások

A Startlap trigonometriával foglalkozó oldala

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu