New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
ナンキョクオキアミ - Wikipedia

ナンキョクオキアミ

出典: フリー百科事典『ウィキペディア(Wikipedia)』

翻訳中:この項目「ナンキョクオキアミ」は翻訳中です。翻訳作業などに協力して下さる方を求めています。詳細はこの項目のノートや履歴、翻訳FAQなどを参照してください。
?ナンキョクオキアミ
Euphausia superba
ナンキョクオキアミ
ナンキョクオキアミ
分類
 : 動物界 Animalia
 : 節足動物門 Arthropoda
 : 甲殻綱 Crustacea
亜綱 : 軟甲亜綱 Malacostraca
上目 : ホンエビ上目 en:Eucarida
 : オキアミ目 Euphausiacea
 : オキアミ科 Euphausiidae
 : オキアミ属 Euphausia
 : ナンキョクオキアミ E.superba
学名
Euphausia superba
和名
ナンキョクオキアミ
英名
Antarctic krill

ナンキョクオキアミ(南極沖醤蝦 Euphausia superba)とは、オキアミ目に属する動物の一種。南極海に分布する。エビに似た外見をしており、巨大な群れを作って群泳する。群れはときには1㎥に10,000–30,000個体の高密度に達する。ナンキョクオキアミは微小な植物プランクトンを直接食べる。その結果、植物プランクトンが外洋でのライフサイクルを支えるために太陽光から引き出した第一次生産エネルギーを利用していることになる。

体長6cm、体重最大2グラムまで成長し、寿命は最高で6年とされている。南極の生態系の鍵種であり、バイオマス(およそ5億トン)でいえば、この惑星で最も成功している動物であるといわれている。

目次

[編集] 分類

オキアミ目は、エビに外見が似た動物で、エビやカニの含まれる十脚目と同じ甲殻綱軟甲亜綱ホンエビ上目に属する。頭胸甲の側縁にひだ状に伸張する鰓域はあるが、十脚目のように鰓室を形成するほどには広く発達しないため、付属肢基部のは外に露出して見える。胸部付属肢には顎脚となって頭部付属肢の大顎、第一小顎、第二小顎とともに口器に組み込まれるものがない点も、十脚目などと異なる。(ウィキスピーシーズも参照Euphausia superba at Wikispecies

[編集] 生活環

卵は表層付近で産卵されると、沈降を開始する。外洋では約10日間沈降し、水深3000m付近でノウプリウスが孵化する。
卵は表層付近で産卵されると、沈降を開始する。外洋では約10日間沈降し、水深3000m付近でノウプリウスが孵化する。

産卵は主に1月から3月にかけて、大陸棚から外洋の深海域にかけての範囲の上層部で行われる。交接様式はオキアミ類の典型的なパターンと同じで、雄は雌の生殖孔に精莢を付着させる。そのため、雄の第一腹脚は交接器に変形している。雌は1回に6,000~10,000の卵を産出する。卵は生殖孔を通るときに精莢から遊離した精子で受精する。(Hempel, I.& Hempel, G. 1986)

著名なイギリスの研究船、ディスカバリー号の航海によるデータに基づくMarr(1962)の古典的な仮説によれば、卵発生の経過は次のようになる。まず原腸形成は、大陸棚では直径0.6mmの卵が海底に沈降して、外洋では2,000~3,000mの深度で沈降しながら起こる。そのすぐ後に、卵は孵化してノープリウス幼生第1期となると、3対の付属肢を使って浮上を開始する。

引き続く2期の幼生、つまりノープリウス幼生第2期とメタノープリウス幼生の間は摂食せず、卵黄に蓄えられた栄養素で生活、発生を続ける。孵化後3週間で、浮上は完了する。 ここからさらにオキアミのゾエア前期幼生であるカリプトピス幼生第2期と第3期、ゾエア後期幼生であるフルシリア幼生第1期~第6期が続き、大きく成長していく。これらの発生段階は付属肢の増加、複眼と剛毛の出現に特徴づけられる。全長15mmになると、成体とほぼ同じ形態の幼体となる。 成熟するのはさらに2~3年後となる。全ての甲殻類と同様、オキアミは成長に伴って脱皮する必要がある。オキアミの場合、だいたい13~20日ごとに外骨格を脱ぎ捨てる。

[編集] 食性

ナンキョクオキアミの頭部。眼柄にある発光器官と触角内部に透けて見える神経、胃内の歯状突起、胸脚によって形成される濾過網とその先端の熊手状の構造に注目。
ナンキョクオキアミの頭部。眼柄にある発光器官と触角内部に透けて見える神経、胃内の歯状突起、胸脚によって形成される濾過網とその先端の熊手状の構造に注目。

ナンキョクオキアミのは、たいてい透明な外骨格を通して鮮やかな緑色に見える。この事は、食物の中で植物プランクトン、特にその中でも20μm程の小型のケイソウが優占していることを示している。これらの植物プランクトンは剛毛によってかご状になっている胸脚によって海水中から濾過される[1]。ケイソウのケイ酸質の細胞壁は胃の内面の歯状突起によって破砕され、内部の原形質は中腸腺の中で消化される。ナンキョクオキアミは橈脚類端脚類などの小型の動物プランクトンを捕食することもできる。消化管は屈曲したり巻いたりしない真っ直ぐな管で、消化能力はそれほど高いわけではない。そのため、には未消化の有機物態の炭素がかなり残る(生物学的ポンプ参照)。

水槽内で、ナンキョクオキアミは共食いもすることが観察されている。 また、水槽内で絶食させた場合、動物の中でも極めて異例なことに、脱皮をしては体が縮小する。 この事は、餌供給の季節変動に対する適応と考えられている。 南極の海では、冬には何ヶ月も氷の下で暗闇に閉ざされ、食物がほとんど供給されなくなるからである。

[編集] 濾過摂食

植物プランクトンが高密度の海水中でのオキアミの摂餌行動。スローモーション(300 frames/sec; 490kB)映像が見られます。
植物プランクトンが高密度の海水中でのオキアミの摂餌行動。スローモーション(300 frames/sec; 490kB)映像が見られます。

英語版Filter feederにて詳細に解説

ナンキョクオキアミは、同じぐらいの大きさの他の高等動物が利用できないような小型の単細胞の植物プランクトンを利用できる。これは、著しく特殊化して効果的な濾過器となった、胸脚を使った濾過摂食によって、実現されている(Kils, U. 1983)。6対の胸脚がかご状となり、海水中から植物プランクトンを集めるのである。この胸脚でできたかごの目の最も細かい部位は、直径1μm程しかない。この驚異的な構造は、走査型電子顕微鏡写真によって研究されている参照ページ。右図にリンクした映像では、ナンキョクオキアミは55°の角度で上を向いて定位している。餌の植物プランクトンが低密度のとき、ナンキョクオキアミは胸脚のかごの口を開いた状態で50cmほど海水中を突き進んで餌を濾過し、胸脚の内側の特殊な剛毛で、口の中に梳き入れる。

[編集] アイスアルジーの掻き取り摂食

ナンキョクオキアミがアイスアルジーを食べているところ―氷の左の方が色づいて緑がかっている―クリックすると大きな映像が見られます―写真は有索潜水機による
ナンキョクオキアミがアイスアルジーを食べているところ―氷の左の方が色づいて緑がかっている―クリックすると大きな映像が見られます―写真は有索潜水機による

ナンキョクオキアミは叢氷(パックアイス)の下面から、アイスアルジーの芝生状のマットを掻きとって摂食することもできる[2](Marschall, P. 1988)。右の写真は、Kils, U.; Marshall, P. (1995)の有索潜水機による調査によって得られた。いかにたくさんのナンキョクオキアミが右往左往して直接氷に定位しているかが見てとれる。中央の1個体だけが水塊中にホバリングして定位している。ナンキョクオキアミには胸脚の先端に特殊な熊手状の剛毛が発達しており、これで芝刈り機のようにジグザグに氷の表面の藻類を刈り取る。1匹のナンキョクオキアミは1秒当たり1.5cm²の割合で氷の表面の藻類を食べつくすことができる。アイスアルジーのフィルムが広範な水域で非常に発達していて、その下の水塊よりも炭素量換算ではるかに大きなバイオマスとなっているというのはごく最近の知見である。ナンキョクオキアミは殊にアイスアルジーの発達する春には、巨大なエネルギー源を手に入れていることになるのである。

[編集] 生物学的ポンプと炭素隔離

有索潜水機 ecoSCOPE によって撮影された海中映像。緑色の吐き出した塊が右下方に確認できる。同じく緑色の糞粒が、左下方に見える。クリックで高画質画像と撮影履歴が見られます。
有索潜水機 ecoSCOPE によって撮影された海中映像。緑色の吐き出した塊が右下方に確認できる。同じく緑色の糞粒が、左下方に見える。クリックで高画質画像と撮影履歴が見られます。

ナンキョクオキアミの食事は非常に乱雑に見える。何千もの植物プランクトンの細胞のくっついた塊 (spit balls) を頻繁に口から吐き、また、大量の炭素(元素としての)とケイソウのケイ酸質の細胞壁とを大量に含んだ糞紐を排泄する。これら両者は重く、急速に深海に沈降する。この過程は生物学的ポンプと呼ばれている。南極圏の海域は水深2,000~4,000mと非常に深く、生物学的ポンプは、二酸化炭素を沈めこむ働きをすることになる。このプロセスによって、莫大な量の炭素(二酸化炭素が植物プランクトンの光合成で固定されたもの)が生物圏から送り込まれ、約1,000年間にわたって大気から隔離される事になる。

もしも海洋生態系において、植物プランクトンが別の生態学的要素によって消費されているならば、大量の炭素が海洋上層部に残存しているはずである。この一連のプロセスは、地球上で最大級のバイオフィードバック機構のひとつであろうという予想がある。おそらく、単一の巨大なバイオマスによって動かされている機構としては最大のものである。今後も南氷洋の生態系についての、さらなる定量的研究が求められる。

[編集] 生物学的特性

[編集] 生物発光

発光するナンキョクオキアミの図
発光するナンキョクオキアミの図

ナンキョクオキアミは、発光器官によって光を放つことができる。このため「光るエビ」と呼ばれることがある。 これらの器官はナンキョクオキアミの体の様々な場所にある。眼柄に1対、第2、第7胸脚の先端に1対ずつ、4対の遊泳脚の基部に1組ずつある。 これらの発光器官は、黄緑色の光を最長で2~3秒間、繰り返し瞬かせる。この光は、トーチライトなみに明るいと考えられている。光を誘導するために器官の後部には凸面の反射鏡があり、前部にはレンズがある。さらに器官全体は筋肉によって回転させることができる。 この、発光の果たす機能はまだ完全には理解されていない。いくつかの仮説は、海中で下方からナンキョクオキアミを見上げる捕食者に対し、発光がオキアミの影を打ち消し、発見されにくくすると示唆している。別の仮説では、発光が、夜間の配偶行動か、群れの形成に需要な役割をもつと考えられている。

ナンキョクオキアミの発光器官は、複数の蛍光物質を含有している。蛍光物質の主要成分は、355nmで励起、510nmで放出(発光)する蛍光特性を持つ。


[編集] 逃避反応

Lobstering krill
Lobstering krill

ナンキョクオキアミは、捕食者から逃れるために、腹部を伸曲することによって尾扇をはばたかせ、すばやく後ろ向きに泳ぐことができる。いわゆる「エビ跳ね」といわれている行動である。移動速度は秒速60cmにもなる。危険を視認してから行動するまでの反応時間は、わずか55ミリセコンド(0.055秒)である。


[編集] 複眼

電子顕微鏡による複眼の画像。複眼は生体では黒く見える。
電子顕微鏡による複眼の画像。複眼は生体では黒く見える。

ナンキョクオキアミが巨大な複眼をどのようにして進化させたのかは謎めいているが、これがきわめて複雑で、優れた視覚器官だとはいえるだろう。

すでに述べたように、ナンキョクオキアミは餌供給の変動に合わせて脱皮を繰り返して、体を小さくすることができるが、複眼だけは脱皮をしても小さくなる事はない。このため、目のサイズと体長との比率を、個体の飢餓状態の信頼度の高い指標として用いることができる。

[編集] 地理的分布

Krill distribution on a NASA SeaWIFS image - the main concentrations are in the Scotia Sea at the Antarctic Peninsula
Krill distribution on a NASA SeaWIFS image - the main concentrations are in the Scotia Sea at the Antarctic Peninsula

ナンキョクオキアミは南氷洋全域の表層に生息している。ちょうど極点を取り巻くように分布するが、特に大西洋との境界域に集中している。 南氷洋と、大西洋、太平洋、インド洋との境界域は、南極収束線を形成する。南極収束線の周極フロントと呼ばれる海域では、南極域の冷たい表層水が、外部の暖かい水と接し、沈降している。周極フロントは、大まかに南緯55度付近に形成されている。この周極フロントから南極大陸までの約3200万平方キロの海域が南氷洋である。これは北極海の約65倍の面積にあたる。冬季には、この海域の約四分の三が氷に覆われ、夏季には2400万平方キロの海面が現れる。水温は約1.3~3℃である。 南氷洋では、南緯40-60度では偏西風によって表層水が東に向けて時計回りに移動し、周南極海流を形成している。一方で内側の大陸沿岸部では東風が反時計回りに吹き、二つの逆向きの海流が出会うことによって巨大な渦状の海流が形成される。ウェッデル海の高密度水塊などがその例である。 ナンキョクオキアミの群れは、水塊に乗って移動し、海域ごとに孤立することなく南極全域でひとつの大きな個体群を形成している。しかし、ナンキョクオキアミへの標識再捕技術は確立されていないため、実際の移動パターンはまだわずかしか判明していない

[編集] 南極圏の生態系における地位

ナンキョクオキアミは南極圏の生態系における鍵種であり、鯨類、アザラシ類、イカ、コオリウオ、ペンギンやアホウドリなどの鳥類の重要な食料である。 カニクイアザラシは、ナンキョクオキアミを捕食するために特殊化された歯を持つ。カニクイアザラシは、辺縁が櫛状に分岐した歯を利用して、ナンキョクオキアミを水中から濾しとることができる。この効率の良い濾過器のような歯を、具体的にどのように使用するのかまでは詳しくはわかっていない。カニクイアザラシは、アザラシの中では最も広い分布域を持ち、餌の98パーセントをナンキョクオキアミが占めている。 カニクイアザラシが一年間に捕食するナンキョクオキアミの総量は6300万トンに達すると見積もられている。餌の45パーセントをナンキョクオキアミが占めるヒョウアザラシもまた同様の歯を発達させている。全てのアザラシ類は合計で6300万~1億3000万トンのナンキョクオキアミを、鯨類は合計で340億~1000億トンのナンキョクオキアミを消費していると見積もられている。 ナンキョクオキアミと、その捕食者との個体サイズは、例外的なほどに差が大きい。一般には、20マイクロメータほどの極小の植物プランクトンから、ナンキョクオキアミのサイズの生物にいたるまでの食物連鎖は、3から4段階の捕食-被食関係がある。この場合には、植物プランクトン-小型のカイアシ類-大型カイアシ類-アミ類-5センチ前後の小型魚類という階層構造のステップを経ている。ところが、食物連鎖の次の段階では、いきなり巨大な鯨に直結してしまう。 このような食物連鎖のサイズの飛躍現象は、南氷洋でのみ見られるものである。 ナンキョクオキアミの分布は南氷洋に限られており、南氷洋における優先種であるが、北大西洋では Meganyciphanes norvegica が、太平洋ではツノナシオキアミ Euphausia pacifica が優先種となっている。

[編集] バイオマスおよび生産量

ナンキョクオキアミのバイオマスは1億2500万トンから7億2500万トンと見積もられており、ナンキョクオキアミは、地球上でもっとも成功した種であるといえる。 ある生物学者は、肉眼で見えるサイズの生物では、アリの占めるバイオマスがもっとも大きなものである。と推定していることにも留意する必要がある。しかしアリは何百種もの異なる種によって構成されている。また、別の推定では、コペポーダのバイオマスこそが最大であろうとされているが、これもまた何百種類もの種を含んでいる。 ナンキョクオキアミのバイオマスが、他の種よりもいかに巨大なものであるか、強く印象づける比較として、以下のようなものがある。 全世界の水産資源のうち、魚類、貝類、甲殻類、頭足類、プランクトンなどの合計量は、年間約1億トンであるのに対し、ナンキョクオキアミ単独の年間生産量は1億3000万トンから数億トンと見積もられている。

ナンキョクオキアミにこのような膨大な量のバイオマスを生産することを可能にしている原因としては、南極大陸の周辺の海域が、世界的に最大級の、おそらくは地球最大の、プランクトン集団を抱えていることが挙げられる。 南極の海は植物プランクトンで満ちている。大陸沿岸で深海域から表層へと湧きあがる海水は、全世界の海洋の光合成層の下部を経由してきており、豊富な栄養塩を含み、かつ、栄養塩が消費されていない。そして南極大陸沿岸で再び生物生産に寄与することになる。

こうして、第一次生産 -食物網の基礎をなす生産で、植物によって太陽エネルギーが生物のバイオマスに変換されること- は広大な海洋で、年次1m²あたり1~2gの炭素固定を行っているのだが、南極の氷の周辺では、1m²あたり30~50gにまで達する。 北海や他の大陸沿岸の湧昇流の海域のような非常に産出力がある領域と比べれば、これらの値は目ざましく高いわけではないが、生産が行われている海域は、熱帯多雨林などの地球上の他の大規模な第一次生産地域と比較してもなお広大である。 さらに、南半球の夏の間、何時間も照射し続ける日光が、生産過程を促進させる。 これらの要素のすべてが、プランクトンとナンキョクオキアミを、地球の生態系の物質循環サイクルの重要な部分にしているのである。

[編集] 流氷原の縮小に伴う減少

after data compiled by Loeb et al. 1997[L+97] - temperature and pack ice area - the scale for the ice is inverted to demonstrate the correlation - the horizontal line is the freezing point - the oblique line the average of the temperature - in 1995 the temperature reached the freezing point
after data compiled by Loeb et al. 1997[L+97] - temperature and pack ice area - the scale for the ice is inverted to demonstrate the correlation - the horizontal line is the freezing point - the oblique line the average of the temperature - in 1995 the temperature reached the freezing point

ナンキョクオキアミの全バイオマスが過去数十年間に急速に減少しているという懸念がある。この値を80%という高さに推測する科学者もいる。これはThis could be caused by the reduction of the pack ice zone due to the consequence of global warming[Gr05]. 右のグラフは過去40年間 the rising temperatures of the Southern Ocean and the loss of pack ice (on an inverted scale) .Southern Oceanの上昇温度と パックアイスの消失を示す。 ナンキョクオキアミは、特に発達の初期諸段階において、ように思われる。Antarctic krill, especially in the early stages of development, seem to need the pack ice structures in order to have a fair chance of survival. 叢氷は、オキアミがその略奪者を回避するために使用する、自然の横穴状のfeaturesを提供する。 In the years of low pack ice conditions the krill tend to give way to Salps[A+04], a barrel-shaped free-floating filter feeder that also grazes on plankton.

[編集] 漁業

Annual world catch of E. superba, compiled from FAO data[FAO05].
Annual world catch of E. superba, compiled from FAO data[FAO05].

Main article: Krill fishery.

The fishery of the Antarctic krill is on the order of 100,000 tonnes per year. The major catching nations are Japan and Poland. The products are used largely in Japan as a delicacy and worldwide as animal food and fish bait. Krill fisheries are difficult to operate in two important respects. First, a krill net needs to have very fine meshes, as it has a very high drag, producing a bow wave that deflects the krill to the sides. Second, fine meshes tend to clog very fast. Additionally, fine nets also tend to be very delicate, and the first krill nets designed exploded while fishing through the krill schools.

Yet another problem is bringing the krill catch on board. When the full net is hauled out of the water, the organisms compress each other, resulting in great loss of the krill's liquids. Experiments have been carried out to pump krill, while still in water, through a large tube on board. Special krill nets also are currently under development. The processing of the krill must be very rapid since the catch deteriorates within several hours. Processing aims are splitting the muscular hind part from the front part and separating the chitin armor, in order to produce frosted products and concentrate powders. Its high protein and vitamin content makes krill quite suitable for both direct human consumption and the animal-feed industry[E+00].

[編集] 今後の展望と海洋エンジニアリング

南極の生態系全体に関して利用しうる乏しい知識にもかかわらず, オキアミを含む大規模な実験が既に 繁殖large scale experiments involving krill are already being performed to increase carbon sequestration: 広大な南洋は栄養物が豊富であるが、しかしそれでもやはり植物プランクトンはあまり成長しない。これらの海域はHNLC (high nutrient, low carbon)と称される。この現象は 、Antarctic Paradoxと称され, が不足しているために生起する。 [3]. 比較的小さいRelatively small injections of iron from research 容器vessels trigger very large blooms, covering many miles. The hope is that such large scale exercises will draw down carbon dioxide as compensation for the burning of fossil fuels [4]. Krill is the key player in collecting the minute plankton cells so as to sink faster, in the form of spit balls and fecal strings. The vision is that in the future a fleet of tankers would circle the Southern Seas, injecting iron, so this relatively unknown animal might help keep cars and air conditioners running.

[編集] 補足

Template:Fnb この種はしばしば、Euphasia superba[5]とかEupausia superba [6]とか誤綴される。

[編集] 参考文献

[編集] さらに詳しく知りたい人のために

  • Template:Mnb2 Hempel, I.; Hempel, G.: Field observations on the developmental ascent of larval Euphausia superba (Crustacea). Polar Biol 6; pp. 121 – 126; 1986.
  • Template:Mnb2 Hempel, G.: Antarctic marine food webs. In Siegfried, W. R.; Condy, P. R.; Laws, R. M. (eds): Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp. 266 – 270; 1985.
  • Template:Mnb2 Hempel, G.: The krill-dominated pelagic system of the Southern Ocean. Envir. Inter. 13, pp. 33 – 36; 1987.
  • Template:Mnb2 Hempel, G.: Life in the Antarctic sea ice zone. Polar Record 27(162); pp. 249 – 253; 1991
  • Template:Mnb2 Hempel, G.; Sherman, K.: Large marine ecosystems of the world: trends in exploitation, protection, and research. Elsevier, Amsterdam: Large marine ecosystems 12, 423 pp; 2003
  • Template:Mnb2 Mauchline, J.; Fisher, L.R.: The biology of euphausiids. Adv. Mar. Biol. 7; 1969.
  • Template:Mnb2 Nicol, S.; Foster, J.: Recent trends in the fishery for Antarctic krill, Aquat. Living Resour. 16, pp. 42 – 45; 2003.
  • Template:Mnb2 Quetin, L. B., Ross, R. M. and Clarke, A.: Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba. In El-Sayed, S. Z. (ed.): Southern Ocean Ecology: the BIOMASS perspective, pp. 165 – 184. Cambridge University Press, 1994.
  • Template:Mnb2 Sahrhage, D.: Antarctic Krill Fisheries: Potential Resources and Ecological Concerns. In Caddy, J. F. (ed.): Marine Invertebrate Fisheries; their assessment and management; pp. 13 – 33. Wiley, 1989.

Ikeda, T. (1984) The influence of feeding on the metabolic activity of Antarctic krill (Euphausia superba Dana). Polar Biology 3(1)

Clarke, A. (1983) Towards an energy budget for krill: The physiology and biochemistry of Euphausia superba Dana. Polar Biology 2(2)

Ishii, H. (1987) Metabolic rates and elemental composition of the Antarctic krill, Euphausia superba dana. Polar Biology 7(6)

[編集] 外部リンク

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu