Global Positioning System
aus Wikipedia, der freien Enzyklopädie
Ein Global Positioning System, auch Globales Positionssystem (GPS) ist jedes satellitengestützte Navigationssystem. Der Begriff GPS wird aber im allgemeinen Sprachgebrauch speziell für das NAVSTAR-GPS des US-Verteidigungsministeriums zur weltweiten Positionsbestimmung verwendet. Das NAVSTAR-GPS-Satellitensystem löst das alte Satellitennavigationssystem Transit der United States Navy ab, ebenso die Vela-Satelliten zur Ortung von Atombombenexplosionen.
Die offizielle Bezeichnung ist „Navigational Satellite Timing and Ranging - Global Positioning System“ (NAVSTAR-GPS). NAVSTAR wird manchmal auch als Abkürzung für „Navigation System using Timing and Ranging“ genutzt. GPS wurde am 17. Juli 1995 offiziell in Betrieb genommen.
[Bearbeiten] Einsatzbereiche
GPS war ursprünglich zur Positionsbestimmung und Navigation im militärischen Bereich (in Waffensystemen, Kriegsschiffen, Flugzeugen) usw. vorgesehen. Heute wird es jedoch vermehrt auch im zivilen Bereich genutzt: in der Seefahrt, Luftfahrt, durch Navigationssysteme im Auto, zur Orientierung im Outdoor-Bereich, im Vermessungswesen etc. In der Landwirtschaft wird es beim so genannten Precision Farming zur Positionsbestimmung der Maschinen auf dem Acker genutzt. Ebenso wird GPS nun auch im Leistungssport verwendet. Speziell für den Einsatz in Mobiltelefonen wurde das Assisted GPS (A-GPS) entwickelt.
[Bearbeiten] Aufbau und Funktionsweise der Ortungsfunktion
Das Prinzip der Satellitenortung beschreibt der Artikel Global Navigation Satellite System.
GPS basiert auf Satelliten, die ständig ihre sich ändernde Position und die genaue Uhrzeit ausstrahlen. Aus deren Signallaufzeit können GPS-Empfänger dann ihre eigene Position und Geschwindigkeit berechnen. Theoretisch reichen dazu die Signale von drei Satelliten aus, welche sich oberhalb ihres Abschaltwinkels befinden müssen, da daraus die genaue Position und Höhe bestimmt werden kann. In der Praxis haben aber GPS-Empfänger keine Uhr, die genau genug ist, um die Laufzeiten korrekt berechnen zu können. Deshalb wird das Signal eines vierten Satelliten benötigt.
Mit den GPS-Signalen lässt sich aber nicht nur die Position, sondern auch die Geschwindigkeit des Empfängers bestimmen. Dieses erfolgt im allgemeinen über Messung des Dopplereffektes oder die numerische Differenzierung des Ortes nach der Zeit. Die Bewegungsrichtung des Empfängers kann ebenfalls ermittelt werden und als künstlicher Kompass oder zur Ausrichtung von elektronischen Karten dienen.
Damit ein GPS-Empfänger immer zu mindestens vier Satelliten Kontakt hat, werden insgesamt mindestens 24 Satelliten eingesetzt, die die Erde jeden Sternentag zweimal in einer Höhe von 20.183 km umkreisen. Jeweils mindestens vier Satelliten bewegen sich dabei auf jeweils einer der 6 Bahnebenen, die 55° gegen die Äquatorebene inkliniert (geneigt) sind und gegeneinander um jeweils 60° verdreht sind. Ein Satellit ist damit alle 23 Stunden 55 Min und 56,6 Sekunden über dem selben Punkt der Erde.
Ein Satellit hat eine erwartete Lebensdauer von 7,5 Jahren, doch funktionieren die Satelliten häufig deutlich länger. Um Ausfälle problemlos zu verkraften, wurden daher bis zu 31 Satelliten in den Orbit gebracht, sodass man auch bei schlechten Bedingungen 5 oder mehr Satelliten verwenden kann. Aktuell benötigt man 60 Tage für das Austauschen eines Satelliten; aus Kostengründen versucht man diesen Zeitraum auf 10 Tage zu senken und somit die Satellitenanzahl auf 25 zu reduzieren.
Das Datensignal mit einer Datenrate von 50 bit/s und einer Rahmenperiode von 30 s wird parallel mittels Spread Spectrum Verfahren auf zwei Frequenzen ausgesendet:
- Auf der L1-Frequenz (1575,42 MHz) werden der C/A-Code („Coarse/Acquisition“) für die zivile Nutzung, und orthogonal dazu der nicht öffentlich bekannte P/Y-Code („Precision/encrypted“) für die militärische Nutzung eingesetzt. Das übertragene Datensignal ist bei beiden Codefolgen identisch und stellt die 1500 Bit lange Navigationsnachricht dar. Sie enthält alle wichtigen Informationen zum Satelliten, Datum, Identifikationsnummer, Korrekturen, Bahnen, aber auch den Zustand, und benötigt zur Übertragung eine halbe Minute. GPS-Empfänger speichern diese Daten normalerweise zwischen. Zur Initialisierung der Geräte werden des Weiteren auch die so genannten Almanach-Daten übertragen, die die groben Bahndaten aller Satelliten enthalten und zur Übertragung über zwölf Minuten benötigen.
- Die zweite Frequenz L2-Frequenz (1227,60 MHz) überträgt nur den P/Y-Code. Wahlweise kann auf der zweiten Frequenz auch der C/A-Code übertragen werden. Durch die Übertragung auf zwei Frequenzen können ionosphärische Effekte, die zur Erhöhung der Laufzeit führen, herausgerechnet werden, was die Genauigkeit steigert.
- Momentan ist eine dritte L5-Frequenz (1176,45 MHz) im Aufbau. Sie soll die Robustheit des Empfangs weiter verbessern und ist vor allem für die Luftfahrt und Safety-of-Life-Anwendungen vorgesehen. Bei der derzeitigen Geschwindigkeit des Ausbaus ist mit einer Fertigstellung ab 2010 und einem Regelbetrieb ab 2013 zu rechnen.
[Bearbeiten] C/A-Code
Der für die Modulation des Datensignals im zivilen Bereich eingesetzte C/A-Code ist eine so genannte pseudozufällige Codefolge mit einer Länge von 1023 Bits. Die Sendebits einer Codefolge werden bei Spread Spectrum Modulationen als so genannte „Chips“ bezeichnet und tragen keine Nutzdateninformation sondern dienen nur zum Empfang mittels Kreuzkorrelation. Diese 1023 Chips lange Folge hat eine Periodenlänge von 1 ms und die Chips-Rate beträgt 1,023 Mcps. Die beiden Codegeneratoren für die Gold-Folge bestehen aus jeweils 10 Bit langen Schieberegistern und sind vergleichbar mit linear rückgekoppelten Schieberegistern, wenngleich sie für sich einzeln nicht die maximale Folge ergeben. Die beim C/A-Code eingesetzten Generatorpolynome G1 und G2 lauten:
- G1 = 1 + x3 + x10
- G2 = 1 + x2 + x3 + x6 + x8 + x9 + x10
Die endgültige Gold-Folge (C/A-Codefolge) wird durch eine Codephasenverschiebung zwischen den beiden Generatoren erreicht. Die Phasenverschiebung wird bei jedem GPS-Satelliten unterschiedlich gewählt, so dass die dabei entstehenden Sendefolgen (Chips-Signalfolgen) orthogonal zueinander stehen - damit ist ein unabhängiger Empfang der einzelnen Satellitensignale möglich, obwohl alle GPS-Satelliten auf den gleichen Nominalfrequenzen L1 und L2 senden (so genanntes Codemultiplex, CDMA verfahren).
Im Gegensatz zu den pseudozufälligen Rauschfolgen aus linear rückgekoppelten Schieberegistern (LFSR) weisen die zwar ebenfalls pseudozufälligen Rauschfolgen aus Gold-Codegeneratoren bei entsprechender Auswahl der zugrunde liegenden Generatorpolynome wesentlich bessere Kreuzkorrelationseigenschaften auf. Dies bedeutet, dass durch die Codephasenverschiebung eingestellten unterschiedlichen Gold-Folgen mit gleichen Generatorpolynomen zueinander fast orthogonal im Coderaum stehen und sich damit kaum gegenseitig beeinflussen. Die beim C/A-Code eingesetzten LFSR-Generatorpolynome G1 und G2 erlauben maximal 1023 Codephasenverschiebungen wovon ca. 25% zueinander eine in der GPS-Anwendung hinreichend kleine Kreuzkorrelation für den CDMA-Empfang aufweisen. Damit können neben den maximal 32 GPS-Satelliten und deren Navigationssignale weitere rund 200 Satelliten zusätzlich Daten auf der gleichen Sendefrequenz zu den GPS-Empfängern übertragen - dieser Umstand wird beispielsweise im Rahmen von EGNOS zur Übermittlung von atmosphärischen Korrekturdaten, Wetterdaten und Daten für die zivile Luftfahrt ausgenutzt.
Da die Datenrate der damit übertragenen Nutzdaten 50 bit/s beträgt und ein Nutzdatenbit genau 20 ms lang ist, wird ein einzelnes Nutzdatenbit immer durch exakt 20malige Wiederholung einer Gold-Folge übertragen.
Der zuschaltbare künstliche Fehler (Selective Availability) wird bei dem C/A-Code dadurch erreicht, dass die zeitliche Ausrichtung (Taktsignal) der Chips einer geringen zeitlichen Schwankung (Jitter) unterworfen wird.
[Bearbeiten] P/Y-Code

Der längere und meist militärisch verwendete P-Code verwendet als Codegenerator so genannte JPL-Folgen. Er unterteilt sich in den öffentlich dokumentierten P-Code [1] und den zur Verschlüsselung auf der Funkschnittstelle eingesetzten und geheimen Y-Code, welcher bedarfsmäßig zu- bzw. abgeschaltet werden kann. Die Kombination daraus wird als P/Y-Code bezeichnet. Die Verschlüsselung mit dem Y-Code soll einen möglichst manipulationssicheren Betrieb (engl. Anti-Spoofing oder AS-Mode) ermöglichen. Seit 31. Januar 1994 ist der AS-Modus permanent aktiviert und es wird nicht mehr der öffentlich bekannte P-Code direkt übertragen.
Der P-Code wird aus vier linearen Schieberegistern (LFSR) der Länge 10 gebildet. Zwei davon bilden den so genannten X1-Code, die anderen beiden den X2-Code. Die X1-Code wird mit den X2-Code über XOR-Verknüpfungen so kombiniert, dass insgesamt 37 verschiedene Phasenverschiebungen 27 verschiedene Wochensegmente des P-Codes ergeben. Die Längen sind bei diesem Code wesentlich länger als beim C/A-Code. So liefert der X1-Codegenerator eine Länge 15.345.000 Chips und X2 eine Codefolge, die exakt um 37 Chips länger ist. Die Dauer bis sich der P-Code wiederholt ergibt sich daraus zu ca. 266 Tage (38 Wochen). Der P/Y-Code wird mit einer Chiprate von 10,23 Mcps gesendet, das entspricht der zehnfachen Chiprate des C/A-Codes. Er benötigt daher ein breiteres Frequenzspektrum als der C/A-Code.
Zur Unterscheidung der einzelnen GPS-Satelliten im P/Y-Code wird die sehr lange Codefolge von rund 38 Wochen Dauer in einzelne Wochensegmente aufgeteilt. Jeder GPS-Satellit hat einen genau eine Woche lang dauernden Codeabschnitt zugewiesen, und am Anfang jeder Woche (Sonntag 00:00 Uhr) werden alle P-Codegeneratoren wieder auf den Startwert zurückgesetzt. Damit wiederholt sich pro GPS-Satellit der P/Y-Code einmal pro Woche. Die Bodenstationen benötigen fünf Wochensegmente des in Summe 38 Wochen langen P-Codes für Steueraufgaben, 32 Wochensegmente sind für die Unterscheidung der einzelnen GPS-Satelliten vorgesehen.
Der C/A-Code dient dabei auch zur Umschaltung (so genanntes Hand Over) auf den P/Y-Code. Da die P-Codefolge pro GPS-Satellit eine Woche umfasst, wäre das direkte Synchronisieren einfacher Empfänger auf die P-Codefolge ohne Kenntnis der genauen GPS-Uhrzeit praktisch unmöglich. Einfache GPS-Empfänger, die den P/Y-Code verwenden, synchronisierten sich zuerst auf den C/A-Code, gewinnen aus den übertragenen Daten die notwendige Umschaltinformationen wie Uhrzeit, Wochentag und andere Informationen, stellten damit ihre P-Codegeneratoren entsprechend ein und schalteten dann auf den Empfang des P/Y-Code um.
Moderne militärische GPS-Empfänger werden heute mit einer sehr viel größeren Anzahl Korrelatoren ausgestattet, ähnlich wie die im zivilen Bereich eingesetzt SiRF-III Chipsatz, wodurch es möglich ist, den P/Y-Code direkt auszuwerten. Diese Empfänger werden bei den Herstellern als "direct Y-code"-Empfänger bezeichnet. Diese Empfängergeneration macht es möglich, den C/A-Code zu stören, um die Nutzung von zivilen GPS-Empfängern durch gegnerische Kräfte beispielsweise zum Vermessen von Feuerstellungen zu verhindern. Da die Bandbreite des militärischen Signals ca. 20 MHz ist, können die 1-2 MHz Bandbreite des C/A-Codes, die zivil genutzt werden, gestört werden, ohne dass militärische Empfänger wesentlich beeinträchtigt werden. Das und die Annahme dass heutige Konflikte regional begrenzt sind, führte zur Entscheidung, die künstliche Verschlechterung abzuschalten.
Die genauen Parameter für die Y-Verschlüsselung des P-Codes sind nicht öffentlich bekannt. Die Parameter der Navigationsdaten (Nutzdaten, Rahmenaufbau, Bitrate), die mittels P/Y-Code übertragen werden, sind allerdings exakt gleich zu den Daten, die mittels der öffentlich bekannten C/A-Codefolge übertragen werden. Der wesentliche Unterschied besteht darin, dass der Takt der P/Y-Codefolge im Satelliten grundsätzlich keinen künstlichen Taktfehler unterworfen wird und der P-Code auch die 10-fache Taktrate zum C/A-Code aufweist. Damit können P/Y-Empfänger die für die Positionsbestimmung wesentliche Information der Übertragungszeiten genauer gewinnen.
[Bearbeiten] Ausbreitungseigenschaften
In den verwendeten Frequenzbereichen breitet sich die elektromagnetische Strahlung ähnlich wie sichtbares Licht fast geradlinig aus, wird dabei aber durch Bewölkung oder Niederschlag nur wenig beeinflusst. Dennoch ist auch aufgrund der geringen Sendeleistung der GPS-Satelliten für den besten Empfang der Signale eine direkte Sichtverbindung zum Satelliten erforderlich. In Gebäuden, Tunneln, Tiefgaragen etc. war ein GPS-Empfang bis vor kurzem nicht möglich. Neue Empfängertechnik ermöglicht jedoch nun auch Anwendungen in Gebäuden. Auch zwischen hohen Gebäuden kann es durch mehrfach reflektierte Signale (Mehrwege-Effekt) zu Ungenauigkeiten kommen. Zudem ergeben sich z.T. große Ungenauigkeiten bei ungünstigen Satellitenkonstellationen, zum Beispiel wenn nur drei dicht beieinander stehende Satelliten aus einer Richtung zur Positionsberechnung zur Verfügung stehen. Für eine exakte Positionsermittlung sollten möglichst Satellitensignale aus verschiedenen Himmelsrichtungen empfangbar sein.
Für die zentrale Kontrolle des GPS ist die 50th Space Wing des Air Force Space Command (AFSPC) der US Air Force auf der Schriever AFB, Colorado zuständig.
Die technische Realisierung einschließlich ihrer mathematischen Grundlagen wird im Artikel GPS-Technologie beschrieben.
[Bearbeiten] Weitere Aufgaben
Die GPS-Satelliten sind Teil des US-Programms Nuclear Detection System (NDS), früher Integrated Operational Nuclear Detection System (IONDS) genannt, eingebunden in das Verteidigungsprogramm DSP (en:Defense Support Program). Sie verfügen über Sensoren für Infrarot- und Gammastrahlung (s. a. en:Bhangmeter) und ebenso Detektoren für EMP. Damit sollen sie Atombombenexplosionen und Starts von Interkontinentalraketen mit einer Ortsauflösung von 100m registrieren [1].
Eine weitere Aufgabe des GPS Systems besteht in der Bereitstellung eines einheitlichen Zeitsystems. Die Uhren der Satelliten werden mehrmals täglich auf GPS-Zeit synchronisiert. Die von einem GPS-Empfänger empfangene Zeit ist zunächst die GPS-Zeit. In der Satellitennachricht ist aber auch die Abweichung zwischen GPS-Zeit und Koordinierter Weltzeit (UTC) angegeben. Mit der Genauigkeit der GPS-Zeit und der Angabe der Abweichung garantiert das System eine Abweichung von UTC um maximal eine Mikrosekunde, wenn die Laufzeit auch so genau bestimmt wird.
[Bearbeiten] Geschichte

Das GPS-Programm wurde mit der Gründung des JPO (Joint Program Office) im Jahre 1973 gestartet. Der erste GPS-Satellit wurde 1978 in den Weltraum entsandt. Im Dezember 1993 wurde die anfängliche Funktionsbereitschaft (Initial Operational Capability) festgestellt. Zu diesem Zeitpunkt waren 24 Satelliten im Einsatz. Die volle Funktionsbereitschaft (Full Operational Capability) wurde im April 1995 erreicht und am 17. Juli 1995 bekanntgegeben.
Um nicht-autorisierte Benutzer (militärische Gegner) von einer genauen Positionsbestimmung auszuschließen, wurde die Genauigkeit für Benutzer, die nicht über einen Schlüssel verfügen, künstlich verschlechtert (Selective Availability = SA, mit einem Fehler von größer 100 m). SA musste in den Block-II-Satelliten implementiert werden, weil der C/A-Dienst deutlich besser als ursprünglich erwartet war. Es gab aber fast immer vereinzelte Satelliten, bei welchen SA nicht aktiviert war, sodass genaue Zeitübertragungen möglich waren.
Am 1. Mai 2000 wurde diese künstliche Ungenauigkeit bei allen Satelliten abgeschaltet, sodass das System seitdem auch außerhalb des bisherigen exklusiven Anwendungsbereichs zur präzisen Positionsbestimmung genutzt werden kann. Dies führte unter anderem zum Aufschwung der Navigationssysteme in Fahrzeugen und im Außenbereich, da der Messfehler nun in mindestens 90 % der Messungen geringer als 10 m ist.
Am 25. September 2005 brachte eine Delta-II-Rakete den ersten GPS-Satelliten der Baureihe GPS 2R-M (Modernized) in den Weltraum. Die Antenne wurde verbessert und das Sendespektrum um eine zweite zivile Frequenz und zwei neue militärische Signale erweitert. Seit Dezember 2005 im Einsatz erweiterte der neue Satellit die Flotte der funktionstüchtigen Satelliten auf 28. Momentan sind 31 Satelliten aktiv (Stand Dezember 2006).
[Bearbeiten] Satelliten
Übersicht über die GPS-Satellitenmodelle
GPS 1R
- Von dieser Baureihe ist kein Satellit mehr aktiv.
GPS 2R
- Masse: 2032 kg
- Dimensionen: 152 x 193 x 191 cm
- Elektrische Leistung: 1,136 kW
- Geschätzte Lebensdauer: Konstruiert für 6-7,5 Jahre, durchschnittliche tatsächliche Einsatzdauer: 10 Jahre, längste Einsatzzeit: 16 Jahre.
- Transponder: 2x L-Band, 1xS-Band
- Kosten: 40 Mio USD
- Hersteller: Lockheed Martin
- Verbreitung: 21 hergestellt, 14 sind im Einsatz, die restlichen 7 werden zu GPS 2R-M umgerüstet.
GPS IIR-M
- Start von GPS 2R-M1 (andere Bezeichnungen: Navstar 57, USA 183, GPS 2R-M1, GPS 2R-14): 25. Sept. 2005
- Masse: 2060 kg
- Elektrische Leistung:
- Geschätzte Lebensdauer: 12,7 Jahre
- Transponder:
- Kosten: 60 Mio EUR
- Hersteller: Lockheed Martin
- Verbreitung: 7 hergestellt, 3 im Einsatz (Stand 12/2006)
- Signal: L2C (zweites ziviles Signal auf L2); L2M (weiteres militärisches Signal, ab 2008)
- Nutzlast: 3 Cs-Atomuhren; Sendeleistung regelbar.
GPS IIF
- ?
- Signal: L5 (drittes ziviles Signal)
- Nutzlast: 2 Cs-Atomuhren, 1 Rb-Atomuhr;
GPS IIIR
- Start geplant für 2012-2014
[Bearbeiten] Genauigkeit der Positionsbestimmung
[Bearbeiten] Kategorisierung
Es gibt die folgenden zwei Dienstklassen:
- SPS (Standard Positioning Service) ist für jedermann verfügbar und erreichte ursprünglich eine Genauigkeit von 100 m (in 95 % der Messungen). Seit Mai 2000 wurde die künstliche Ungenauigkeit vom US-Militär abgeschaltet; seitdem beträgt die Genauigkeit ca. 15 m.
- PPS (Precise Positioning Service) ist der militärischen Nutzung vorbehalten und ursprünglich auf eine Genauigkeit von 22 m (in 95 % der Messungen; die aktuelle Genauigkeit ist unbekannt) ausgelegt worden. Diese Signale werden verschlüsselt ausgestrahlt.
Eine Erhöhung der Genauigkeit (0,01–5 m) kann durch Einsatz von DGPS (Differential-GPS) erreicht werden.
Mit der vierten Ausbaustufe soll die bisherige globale Selective Availablity, die bis zum 1. Mai 2000 durch eine globale künstliche Verschlechterung implementiert war, in Krisen- bzw. Kriegsgebieten durch lokale Störung des Empfangs der auch zivil zugänglichen Signale verwirklicht werden.
Des Weiteren sind einige satellitengestützte Erweiterungssysteme (Satellite-Based Augmentation Systems, SBAS) zur weiteren Verbesserung der Genauigkeit geplant: EGNOS in Europa und WAAS in den USA.
GPS nutzt eine eigene kontinuierliche Atomzeitskala, welche keine Schaltsekunden berücksichtigt. Seit Einführung von GPS im Jahr 1980 hat sich deshalb die Differenz zwischen der GPS-Zeit und der UTC aktuell (2006) auf 14 Sekunden aufsummiert. Der aktuelle Wert dieser Differenz wird im Nutzdatensignal des Systems übertragen.
Es gibt die folgenden zwei Verfahren, um mittels GPS eine Position zu bestimmen:
- Code: Dieses Verfahren ermöglicht eine recht robuste Positionsbestimmung mit einer Genauigkeit von weniger als 10 m. Alle preiswerten Empfänger verwenden dieses Verfahren. Mittels DGPS sind Genauigkeiten unter einem Meter möglich.
- Code + Trägerphase: Unter guten Empfangsbedingungen und mit präzisen Empfängern ist mit diesem Verfahren eine Genauigkeit von unter 5 m möglich. Die Genauigkeitssteigerung rührt aber nicht nur vom geringeren Rauschen der Trägerphasenmessung her, sondern auch von der Verwendung der zweiten Frequenz zur Ionosphärenmessung. Soll der Millimeter-Bereich erreicht werden, so ist dies bisher nur im DGPS-Betrieb möglich, weil auch die lokalen Effekte der Troposphäre berücksichtigt werden müssen.
In Fahrzeugen können zusätzlich Odometrie-Daten wie Geschwindigkeit und Beschleunigung verwertet werden, um die Position präziser zu bestimmen oder auch noch in Funklöchern wie z. B. Tunneln eine Position ermitteln zu können. Da die Odometrie-Daten nur von den in der Fahrzeugelektronik implementierten Sensoren gemessen und an das Navigationssytem übermittelt werden können, ist diese höhere Präzision derzeit nur von festeingebauten Navigationssystemen zu erreichen.
[Bearbeiten] Relativistische Effekte
Die Zeit, die die Atomuhren auf den GPS-Satelliten anzeigen, unterliegt den Effekten der relativistischen Zeitdilatation. Dabei hängt nach der allgemeinen Relativitätstheorie die Ganggeschwindigkeit einer Uhr vom Ort im Gravitationsfeld ab und nach der speziellen auch von ihrer Geschwindigkeit. Das höhere Gravitationspotenzial in der Satellitenbahn lässt die Zeit schneller vergehen, die Bahnbewegung der Satelliten relativ zu einem ruhenden Beobachter auf der Erde verzögert sie. In einer Flughöhe von ca. 3000 km heben sich beide Effekte gerade auf, in der GPS-Satellitenbahn überwiegt der gravitative Effekt um mehr als das 6-fache. Auf den Satelliten geht damit die Zeit vor. Der relative Gangunterschied zu einer irdischen Uhr liegt zwar bei nur 4,4·10-10 s, er ist jedoch deutlich größer als die relative Ganggenauigkeit von Rubidium-Atomuhren, die besser als 10-14 s sind.
Oft wird irrtümlich darauf hingewiesen, dass diese Gangunterschiede zu einem Positionsbestimmungsfehler von mehreren Kilometern pro Tag führten, wenn sie nicht korrigiert würden. Ein solcher Fehler würde aber nur dann auftreten, wenn die Positionsbestimmung über die Ermittlung der Abstände des GPS-Empfängers zu 3 Satelliten anhand eines Uhrenvergleichs mit einer Uhr im Empfänger erfolgte. In diesem Fall würde sich bei jeder dieser Abstandsbestimmungen ein Fehler von ca. 12 km pro Tag anhäufen. Gewöhnliche GPS-Empfänger sind aber nicht mit einer Atomuhr ausgestattet. Stattdessen werden die Zeitsignale (C/A-Code) der empfangbaren Satelliten ausgewertet, wobei für eine Positionsbestimmung mindestens 4 Satelliten erforderlich sind. Da alle Satelliten den gleichen relativistischen Effekten ausgesetzt sind, tritt ein Positionsbestimmungsfehler dieser Art hier gar nicht auf.
Damit die Satellitensignale des GPS außer zur Positionsbestimmung auch als Zeitstandard verwendet werden können, wird der relativistische Gangunterschied der Uhren allerdings kompensiert. Dazu wird die Schwingungsfrequenz der Satelliten-Uhren auf 10,229999995453 MHz verstimmt, so dass trotz der relativistischen Effekte ein synchroner Gang mit einer irdischen Uhr mit 10,23 MHz gewährleistet ist. Weitere relativistische Effekte wie zum Beispiel der Sagnac-Effekt sind so klein, dass sie bei stationären Empfängern nicht gesondert berücksichtigt werden müssen. Darüber hinaus werden die Uhren mehrmals täglich synchronisiert, und damit auch alle sonstigen Effekte eliminiert, die einen synchronen Gang mit einer irdischen Uhr stören könnten.
[Bearbeiten] Differential-GPS
Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf bitte mit ihn zu verbessern und entferne anschließend diese Markierung. |
Differential Global Positioning System (DGPS) ist eine Bezeichnung für Verfahren, die mehrere GPS-Empfänger zur Erhöhung der Genauigkeit verwenden. Bei dem Verfahren gibt es einen Empfänger, dessen Position bestimmt werden soll (Rover) und mindestens einen weiteren Empfänger, dessen Position bekannt ist (GPS-Basisstation). Eine Basisstation kann diverse Informationen über die Ursachen ermitteln, warum die mittels GPS bestimmte Position fehlerhaft ist, da deren Position bekannt ist. Mit diesen Informationen (Korrekturdaten) von einer Basisstation kann ein Rover seine Genauigkeit erhöhen. Die erreichbare Genauigkeit ist u. a. vom Abstand zwischen Rover und Basisstation abhängig.
Methoden des DGPS:
- Bei dem einfachsten Verfahren übermittelt die Basisstation ihren Positionsfehler an den Rover. Dieser korrigiert entsprechend seine Position. Dies funktioniert nur, wenn beide Empfänger die gleichen Satelliten auswerten (dies ist nur über kurze Distanz und in gleicher Umgebung der Fall).
- Bei der Methode der Pseudorange-Korrektur berechnet die Basisstation die Fehler der Strecken zu den Satelliten und übermittelt diese an den Rover. So ist auch eine Korrektur möglich, wenn von der Basisstation und dem Rover unterschiedliche Satelliten empfangen werden. Es sind Genauigkeiten <1 m möglich.
- Bei den sehr genauen Messungen wird auch die Phasenlage ausgewertet. Auf diese Weise ist eine Genauigkeit von ± 1 bis ± 10 mm pro km Abstand zur Basisstation zu erreichen.
Die Übermittlung der Korrekturdaten von einer Basisstation zum Rover kann mittels Funk erfolgen. Ein Rover ist dann sofort in der Lage, seine Genauigkeit zu erhöhen. Auch im Nachhinein kann eine Korrektur erfolgen, wenn Rover und Basisstation alle Daten zur Positionsbestimmung aufzeichnen (Postprocessing).
Die Korrekturdaten können von einem Anwender selbst erzeugt werden (mittels eines zweiten GPS-Empfängers) oder von div. Anbietern bezogen werden (ALF, AMDS, SAPOS, ascos usw.).
Um auf Zweitgeräte verzichten zu können, richtet die Landesvermessung der Bundesländer in Deutschland ein Feld von Referenzstationen ein (SAPOS-Netz). Mit Hilfe der Daten dieses Netzes ist eine hochgenaue Positionsbestimmung mit nur einem Empfänger möglich, bei Verwendung entsprechender Hardware sind hochgenaue Messungen in annähernd Echtzeit möglich.
Für die Bundesrepublik Deutschland werden Differential-Stationen von der Wasser- und Schifffahrtsverwaltung betrieben. Diese Stationen arbeiten nach dem internationalen IALA-Standard und senden Korrekturdaten auf Mittelwelle für den Küsten- und Binnenbereich aus. Zentrale technische Behörde ist die Fachstelle der WSV für Verkehrstechniken in Koblenz.
[Bearbeiten] Datenformate
Als Standardformat von GPS-Daten dient das RINEX-Format, eine Standard- und Formatdefinition, die einen freien Austausch von GPS-Rohdaten ermöglichen soll. Für den Austausch von GPS-Daten in Echtzeitanwendungen ist das RTCM-Format von Bedeutung.
Siehe auch: NMEA 0183
Neben diesen Basisformaten speichern die GPS-Geräte unteschiedlicher Hersteller die GPS-Daten (Routen, Track Logs und Wegpunkte) häufig in eigenen proprietären Dateiformaten. Als allgemeine Austauschformate bieten sich das gpx-Format und das Google Earth eigene .kml-Format an. Eine Konvertierung zwischen verschiedenen Formaten erlaubt die freie Software GPSBabel.
[Bearbeiten] Störsender
Für das GPS-System existieren so genannte GPS-Jammer (Jammer = engl. für Störsender).
[Bearbeiten] Alternativen
- Transit
- Der Vorgänger des GPS von den USA (Sendefrequenz: 150 und 400 MHz). Entwickelt ab 1958, in Betrieb seit 1964 und zivil ab 1967 genutzt. Seit dem 31. Dezember 1996 als Navigationssystem außer Betrieb. (Da das System weiter sendete, wurde es danach als Navy Ionospheric Monitoring System (NIMS) weiterbetrieben.)
- GLONASS
- Das russische Pendant zum amerikanischen NAVSTAR-GPS.
- Euteltracs
- Europäisches Positionssystem für Fernverkehr (sehr ungenau). Es sendet auf einer Frequenz von 10–14 GHz und ist seit 1991 in Betrieb.
- Galileo
- EU und ESA haben gemeinsam die Entwicklung eines europäischen Systems zur Satellitennavigation für überwiegend zivile Anwendungen mit dem Namen Galileo vorangetrieben. Die Entwicklungs- und Testphase wurde im Dezember 2004 in einem 4-Jahresvertrag an die Industrie vergeben. Nach Ablauf dieses Vertrages sollen 32 Galileo-Satelliten im All und der Großteil des Bodensegments installiert sein. Der ursprüngliche Zeitplan sieht wie folgt aus: Bis 2005 Entwicklungs- und Testphase, Aufbau des Satellitennetzes ab 2006, Testphase ab 2008.
- Es wird mindestens vier Dienste (OS, CS, SoL, PRS) geben. Die zivile und kostenlose Positionsbestimmung (OS) wird eine Genauigkeit von 5–8 m bereitstellen. Beim SoL-Dienst wird zusätzlich noch Integrität, also die rechtzeitige Warnung des Nutzers, wenn der Positionierungsfehler größer als eine vorgegeben Schranke (12 m horizontal, 20 m vertikal) ist, bereitgestellt. Der PRS-Dienst wird die Bedürfnisse staatlicher Organisationen befriedigen. Im CS-Dienst können noch zusätzlich Informationen mit geringer Datenrate an Abonnenten übertragen werden.
- MTSAT
- Das Multifunction Transport Satellite System ist eine Entwicklung Japans (Frequenz 1,2 GHz). Noch in der Experimentierphase. (Stand 2003)
- Compass
- Das Navigationssystem der Volksrepublik China (Sendefrequenz 1,4 GHz). Seit 2004 in Betrieb, allerdings beschränkt sich die Nutzung auf den asiatischen Bereich.
[Bearbeiten] GPS und Datenschutz
Der Aufenthaltsort des Trägers eines GPS-Empfängers lässt sich, da die Geräte momentan nur passiv arbeiten und keine Signale senden, nicht verfolgen. Für eine GPS-Überwachung benötigt man eine Kombination aus einem passiven GPS-Empfänger mit einem aktiven Sender, der die ermittelten Positionsdaten an Dritte weitergibt.
GPS wird von der deutschen Polizei für Ermittlungen eingesetzt. Es dient zur Überwachung bestimmter Fahrzeuge und Fahrer. Im April 2005 entschied das Bundesverfassungsgericht, dass der Einsatz des satellitengestützten Systems zur Überwachung in einem strafrechtlichen Ermittlungsverfahren nicht gegen das Grundgesetz verstoße. Der Zweite Senat wies mit diesem Urteil eine Verfassungsklage eines Ex-Mitglieds der Antiimperialistischen Zellen (AIZ) zurück, der beanstandet hatte, eine zweieinhalb Monate andauernde Überwachung seines Fahrzeugs und dessen verschiedener Benutzer habe in übertriebener Weise in Grundrechte der Überwachten eingegriffen.
[Bearbeiten] GPS in der Praxis

Handelsübliche zivile GPS-Geräte für Verbraucher eignen sich vor allem für den Einsatz im Auto und im „Outdoor“-Bereich. Handelsübliche GPS-Empfänger (GPS-Mäuse) verwenden meist das NMEA 0183-Datenformat zur Ausgabe der Positionsdaten.
Den großen Unterschied macht jedoch heute, in miteinander vergleichbaren Systemen, weniger die Technik sondern mehr das jeweilige Navigationsprogramm. So gibt es derzeit von Programm zu Programm, noch sehrwohl Unterschiede in der Routenführung.
2006 entdeckte Alessandro Cerruti von der amerikanischen Cornell University, dass GPS durch Sonneneruptionen gestört werden kann. In den vergangenen Jahren waren diese – und die damit verbundenen geomagnetischen Stürme – wenig ausgeprägt, sie sollen jedoch bis 2011 wieder zunehmen.
Auch kann der GPS-Empfang durch starke Schneefälle gestört werden. Sonstige Wetterverhältnisse, wie Regen und Nebel, beeinträchtigen den Empfang normalerweise jedoch nicht.
Zu den Herstellern zählen Garmin, Magellan, HAiCOM, Globalsat und RoyalTec.
[Bearbeiten] Im Auto
Hier handelt es sich um GPS-Geräte, die mit umfangreicher Landkarten- und Stadtplan-Software ausgestattet sind. Sie ermöglichen meist akustische Richtungsanweisungen an den Fahrer, der zum Beispiel am Beginn der Fahrt bloß den Zielort (z. B. Straßenname) einzugeben braucht. Im Auto wird bei Festeinbauten ab Werk (siehe Head Unit) unterschieden zwischen Systemen, die Sprachausgabe mit Richtungsangaben auf einem LCD (meist im Autoradioschacht) kombinieren, sowie Sprachausgabe mit farbiger Landkartendarstellung, bei welcher der Fahrer besser räumlich sieht, wo er unterwegs ist.
In letzter Zeit haben PDA-, Smartphone- und PNA-Systeme starken Zuwachs erhalten. Sie können flexibel in verschiedenen Fahrzeugen schnell eingesetzt werden. Meist wird die Routenführung grafisch auf einem Farbbildschirm mit Touchscreen dargestellt. Auch ist die Verbreitung durch ständig fallende Preise der Elektronikhändler und Lebensmitteldiscounter zu erklären.
Bei den meisten Festeinbauten ab Werk sowie den neuesten PDA- und PNA-Lösungen werden Verkehrsmeldungen des TMC-Systems, wonach der Fahrer automatisch an Staus oder Behinderungen vorbei dirigiert werden soll, auch mit berücksichtigt.
Festeingebaute Systeme sind in der Regel zwar erheblich teurer als mobile Geräte in Form von z. B. PDAs, haben jedoch den Vorteil, dass sie mit der Fahrzeugelektronik gekoppelt sind und zusätzlich Odometrie-Daten wie Geschwindigkeit und Beschleunigung verwenden, um die Position präziser zu bestimmen und auch noch in Funklöchern wie z. B. Tunneln eine Position ermitteln zu können.
Der Vorteil der stark zunehmenden Navigation in Autos liegt darin, dass der Fahrer sich ganz auf den Verkehr konzentrieren kann, es ist ein Komfortmerkmal für den Fahrer, navigiert zu werden. Auch kann ca. 1–3 % Treibstoffverbrauch eingespart werden, wenn alle Fahrzeuge den optimalen Weg wählen würden.
Es darf jedoch auch nicht unerwähnt bleiben, dass vor allem Geräte mit graphischer Anzeige dazu neigen, den Fahrer abzulenken und es daher vermehrt zu Unfällen aufgrund von Unachtsamkeit gekommen ist.
GPS kann auch zur Diebstahlsicherung genutzt werden. Hierzu wird die GPS-Anlage z. B. des Fahrzeuges mit einem GSM-Modul kombiniert. Das Gerät sendet dann, im Falle eines Fahrzeugdiebstahls, die genauen Koordinaten an einen Dienstleister. In Verbindung mit einem PC kann dann z. B. über das Internet sofort die entsprechende Straße und der Ort abgelesen und die Polizei alarmiert werden.
[Bearbeiten] Draußen
GPS-Geräte eignen sich auch zum Einsatz am Fahrrad, beim Wandern (zum Beispiel als kompaktes Gerät am Handgelenk) oder im Flugzeug oder neuerdings auch beim Fotografieren (Geo-Imaging). Der Funktionsumfang der im Handel erhältlichen Geräte richtet sich nach Anwendungsbereich und Preis. Schon einfache Geräte können heute nicht bloß die Längen- und Breitengrade anzeigen, sondern auch Richtungsangaben machen, Entfernungen berechnen und die aktuelle Geschwindigkeit angeben. Die Anzeige kann so eingestellt werden, dass ein Kompasssymbol ausgegeben wird, das nicht nach Norden, sondern in die Richtung zeigt, die vom Benutzer durch die Eingabe der Zielkoordinaten (Wegpunkt) angegeben worden ist. GPS-Geräte stellen hier eine Weiterentwicklung der klassischen Navigation mit Kompass und Karte dar. Diese Funktion verwendet man zum größten Teil bei der Schatzsuche per GPS (Geocaching). Hochwertige, moderne Geräte können neben Wegpunkten, Routen und Track Logs auch digitale Karten speichern und damit den aktuellen Standort auf einer Karte darstellen. Für den Außenbereich liegen für verschiedene Länder Topografische Karten im Maßstab 1:25.000 zur Nutzung mit dem GPS vor.
Wenngleich die „Outdoor“-GPS-Geräte dafür nicht primär gedacht sind, können selbst kleine Armbandgeräte in Autos oder in der Bahn (Fensterplatz) verwendet werden; der Empfang in Gebäuden ist jedoch mit diesen Geräten gewöhnlich nicht möglich.
[Bearbeiten] In der Seefahrt
Es gibt eine breite Angebotspalette an GPS-Geräten, die speziell für die Anforderungen der Seefahrt zugeschnitten sind, von kleinen Handgeräten über PC- und PDA-Programme, die mit damit GPS-Empfängern arbeiten, bis zu Einbauanlagen für die Großschifffahrt. Für die Zwecke der Seenavigation bestimmte Geräte verfügen dabei in der Regel über eine Kartenanzeige ("Moving Map") mit speziellen, elektronischen Seekarten in verschiedenen, nur begrenzt standardisierten Formaten. Viele der Geräte sind wassergeschützt ausgelegt; anspruchsvollere ermöglichen auch die Kompositdarstellung der Seekarten mit weiteren Daten wie Wetterkarten oder Radardarstellungen.
Die beiden Wissenschaftlern Maurice Green und Kenneth Scussel vom US Office of Naval Research (ONR) ist es 2007 zudem gelungen, ein Unterwasser-GPS-System zu entwickeln, dass eine genaue Positionsbestimmung von U-Booten ermöglichen soll. Das System ist in der Lage, anhand von akustischen Signalen und Computerberechnungen die Position von U-Booten und in Zukunft möglicherweise auch von Tauchern zu orten. Hierzu werden am Meeresgrund fest verankerte genau positionierte GPS-Basisstationen eingerichtet. Ein U-Boot kann über Sonarimpulse mit der GPS-Basisstation am Meeresboden "kommunizieren". Durch das Antwortsignal der GPS-Meeresbodenstation, dass die genaue Tiefe und den Peilwinkel des empfangenen Schall-Impulses errechnet, kann ein Computersystem an Bord eines U-Bootes mit den GPS-Daten die eigene Position unter Wasser berechnen.
[Bearbeiten] In Gebäuden
In Gebäuden ist der GPS-Empfang generell reduziert, bis unmöglich. Im konkreten Fall hängt es neben den verwendeten Baustoffen im Gebäude und deren Dämpfungsverhalten auch vom Standort innerhalb eines Gebäudes ab. In Fensternähe bzw. in Räumen mit großen Fenstern und freier Sicht auf den Himmel kann je nach momentaner Satellitenposition durchaus noch eine Standortbestimmung mit reduzierter Genauigkeit möglich sein. In Innenräumen wie Keller ist der GPS-Empfang praktisch immer unmöglich.
Mit neueren Empfänger-Chipsätzen der Firma SiRF ist in manchen Situationen wie in Gebäuden ein GPS-Empfang durch in Hardware massiv parallelisierte Korrelationsempfänger möglich. Statt wie bei herkömmlichen GPS-Empfängern die Korrelationen der Codefolgen (CDMA) zeitlich hintereinander durchzuprobieren und sich nur auf einen Empfangsweg festlegen zu können, werden bei diesen Chipsätzen über 20.000 Korrelationsempfänger parallel eingesetzt und zeitgleich ausgewertet. Damit kann der Mehrwegeempfang reduziert werden und in Kombination mit einer gesteigerten Eingangsempfindlichkeit des HF-Eingangsteils können die an Wänden oder Böden reflektierten GPS-Funksignale unter Umständen auch im Inneren von Gebäuden oder engen Gassen in dicht verbauten Gebieten noch ausgewertet werden. Allerdings ist bei indirektem Empfang von GPS-Signalen über Reflexionen eine Reduktion der Genauigkeit verbunden, da das Signal dann eine längere Laufzeit aufweist und die genauen zeitlichen Bezüge nicht mehr passen. Der zusätzliche Fehler über Mehrwegeempfang kann über einige 10 m betragen.
[Bearbeiten] Verwandte Themen
- Geodätisches Datum – zu Grunde liegende Ellipsoidmodelle der Erde, beispielsweise WGS84
- Geocaching – Schatzsuche mit GPS-Empfängern
- GPS Drawing – Zeichnen durch Aufzeichnen einer Route
- APRS – Automatic Position Reporting System (GPS Positionsdatenübermittlung im Amateurfunkdienst)
- GpsDrive – freie Navigationssoftware unter Linux
- GPS-Technologie
- Galileo (Satellitennavigation) – europäisches Satellitennavigationssytem
- Geo-Imaging - Photos mit Koordinaten versehen
- AGPS – schnellere Positionsbestimmung durch GPS in Kombination mit Positionsdaten von GSM-Betreibern
[Bearbeiten] Quellenangaben
- ↑ IS-GPS-200 Offizielle US-Airforce Seite des GPS PUBLIC INTERFACE CONTROL WORKING GROUP (engl.) mit der Referenzdokumentation IS-GPS-200 in der jeweils aktuellen Fassung.
[Bearbeiten] Literatur
- G. Seeber: Satellite Geodesy. de Gruyter, 2003
- G. Xu: GPS - Theory, Algorithms and Applications. Springer-Verlag, 2003, ISBN 3540678123
- M. Bauer: Vermessung und Ortung mit Satelliten (2002)
- Jörg Roth: Mobile Computing, dpunkt, 2002, ISBN 3898641651
- E. Kaplan, editor. Understanding GPS: Principles and Applications. Artech House, 1996
- Global , Reise Know-How Verlag Rump, Februar 2005, ISBN 383171116X
- Uli Benker: GPS, Praxisbuch und Ratgeber für die GPS-Navigation auf Outdoor-Touren, Bruckmann-Verlag, 2005, ISBN 3-7654-4252-6
- Ralf Schönfeld: Das GPS-Handbuch, 2 Bände Grundlagen und Anwendung, Verlagshaus Monsenstein und Vannerdat, 2005, ISBN 3-86582-234-7
- Alois Goiser: Handbuch der Spread-Spectrum Technik, Wien, Springer Verlag 1998, ISBN 3-211-83080-4
[Bearbeiten] Weblinks
Commons: Global Positioning System – Bilder, Videos und/oder Audiodateien |
- Joint Program Office
- Zugesicherte Leistungsfähigkeit von GPS (PDF)
- GPS General Information US Coast Guard
- Sehr große Koordinatendatenbank der NGA
- Community mit frei verfügbaren GPS-Tracks aus aller Welt
- Profile: GPS Architect, Bradford W. Parkinson Der Vater von GPS
- Infoseite zu GPS
- Wissenswertes rund um die Satellitennavigation
- GISWiki
- ZDF Abenteuer Wissen zum Thema
- Anwendung des GPS in der Sportschifffahrt
- Fehlerquellen bei der GPS Positionsbestimmung
- im Aufbau begriffene Wiki zum Thema GPS