Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions משפט הערך הממוצע של לגראנז' - ויקיפדיה

משפט הערך הממוצע של לגראנז'

מתוך ויקיפדיה, האנציקלופדיה החופשית

המחשה של המשפט: הקו הירוק, שהוא המשיק לגרף בנקודה c, מקביל לקו הכתום, המחבר את קצות גרף הפונקציה בקטע [a,b]
המחשה של המשפט: הקו הירוק, שהוא המשיק לגרף בנקודה c, מקביל לקו הכתום, המחבר את קצות גרף הפונקציה בקטע [a,b]

משפט הערך הממוצע של לגראנז' הוא משפט בחשבון אינפיניטיסימלי העוסק במשיק לפונקציה רציפה בקטע סגור. לפי המשפט, אם הפונקציה גזירה בכל הקטע (למעט אולי נקודות הקצה), אז יש נקודה שבה המשיק מקביל לקו המחבר את קצות הגרף של הפונקציה. משפט זה מהווה הרחבה פשוטה יחסית של משפט רול, שבו מניחים ששני הערכים שהפונקציה מקבלת בקצות הקטע שווים זה לזה. ההנחה על קיום הנגזרת חיונית: אם הפונקציה אינה גזירה בכל הקטע הפתוח, ואפילו רק בנקודה אחת, ייתכן שהמשיק המבוקש אינו קיים. אחד השימושים החשובים של המשפט הוא בהערכת השגיאה כאשר מקרבים פונקציה בעזרת טור חזקות.

בניסוח אחר, המשפט מתייחס להשתנות של הפונקציה בין נקודות הקצה של הקטע - ומראה שתמיד קיימת נקודה שהשינוי הרגעי בה שווה לשעור ההשתנות הממוצע. לדוגמה, אם מכונית עוברת מרחק של 100 קילומטר בשעתיים, בהכרח היה רגע במהלך הנסיעה שבו מהירותה הייתה בדיוק 50 קמ"ש (וזאת כמובן בהנחה שפונקציית המרחק שהמכונית עוברת רציפה וגזירה - כלומר שלמכונית יש מהירות בכל רגע נתון).

אף שהמשפט אינו נותן כלי מעשי למציאת הנקודה שבה מתקבל הממוצע, יש לו חשיבות תיאורטית רבה והוא שימושי בהוכחתם של משפטים רבים, שכן הוא מסייע להעריך את השינוי בערכה של פונקציה באמצעות הכרת נגזרתה.

[עריכה] המשפט והוכחתו

משפט הערך הממוצע: תהא \ f פונקציה רציפה בקטע \left[a,b\right] וגזירה בקטע \left(a,b\right). אז קיימת נקודה c\isin (a,b) שעבורה f'(c)=\frac{f(b)-f(a)}{b-a}.

הוכחה: תהא \ k(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) נוסחת הקו הישר שעובר דרך הנקודות \ (a,f(a)) ו-\ (b,f(b)). זוהי פונקציה רציפה וגזירה בכל מקום, שנגזרתה קבועה, k'(x)=\frac{f(b)-f(a)}{b-a}\,.

אנו מעוניינים להראות כי הנגזרת של \ f שווה, בנקודה מתאימה, לשיפוע של הישר המיוצג על ידי \ k, כלומר ל-\ k'. לשם כך נשתמש במשפט רול על פונקציה חדשה, שהיא ההפרש בין \ f ו-\ k. הסיבה לכך היא שאנו מעוניינים להוכיח שקיימת נקודה שבה שתי הנגזרות שוות זו לזו, כלומר, נגזרת ההפרש היא 0.

נגדיר את פונקציית ההפרש \ h(x)=f(x)-k(x). זוהי פונקציה רציפה ב-\ [a,b] (כהפרש של פונקציות רציפות), גזירה ב-\ (a,b) (כהפרש של פונקציות גזירות), ומקיימת \ h(a)=h(b)=0 (זאת משום ש-\ h(a)=f(a)-k(a)=0 ובדומה גם לגבי הנקודה \ b). לכן, ממשפט רול נובע כי קיימת נקודה \ c\in(a,b) כך ש-\ h'(c)=0.

אבל \ h'(c)=f'(c)-k'(c), כלומר:

f'(c)=\frac{f(b)-f(a)}{b-a} \Leftarrow f'(c)-\frac{f(b)-f(a)}{b-a}=0 \Leftarrow f'(c)-k'(c)=0.

[עריכה] הערות

  • ממשפט הערך הממוצע נובע שאם פונקציה גזירה בקטע פתוח והנגזרת שלה זהותית אפס בו, אז הפונקציה בהכרח קבועה.
  • משפט הערך הממוצע של קושי הוא הכללה של משפט הערך הממוצע של לגראנז'.
  • ממשפט הערך הממוצע ניתן לקבל את שארית לגראנז' של פיתוח טיילור.
  • ממשפט הערך הממוצע נובע כי פונקציה גזירה בעלת נגזרת חסומה מקיימת את תנאי ליפשיץ (ולכן רציפה במידה שווה).
חשבון אינפיניטסימלי
מושגי יסוד:

חשבון אינפיניטסימלי | סדרה | גבול | סדרת קושי | טור | אינפיניטסימל | שדה המספרים הממשיים | ערך מוחלט | אי-שוויון המשולש | אי-שוויון קושי-שוורץ

פונקציות:

פונקציה | גרף פונקציה | פונקציה לינארית | פונקציה מונוטונית | נקודת קיצון | פונקציה קעורה | פונקציה קמורה | פונקציה רציפה | רציפות במידה שווה | נקודת אי רציפות | נגזרת | טור טיילור | סדרת פונקציות | התכנסות במידה שווה

משפטים:

משפט בולצאנו-ויירשטראס | משפטי ויירשטראס | משפט קנטור | משפט ערך הביניים |משפט פרמה | משפט רול | משפט הערך הממוצע של לגראנז' | משפט הערך הממוצע של קושי | משפט דארבו | כלל השרשרת | כלל הסנדוויץ' | כלל לופיטל | משפט שטולץ | אריתמטיקה של גבולות

האינטגרל:

אינטגרל | המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי | אינטגרציה בחלקים | שיטות אינטגרציה

אנליזה מתקדמת:

פונקציה מרוכבת | אנליזה וקטורית | שיטת ניוטון-רפסון | משוואה דיפרנציאלית | טופולוגיה | תורת המידה

אנליזה מתמטית - אנליזה וקטורית - טופולוגיה - אנליזה מרוכבת - אנליזה פונקציונלית - תורת המידה
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu