New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Factorial - Wikipédia

Factorial

Origem: Wikipédia, a enciclopédia livre.

Na matemática, o factorial (fatorial no Brasil) de um número natural n é o produto de todos os inteiros positivos menores ou iguais a n. Isso é escrito como n! e lido como "fatorial de n ". A notação n! foi introduzida por Christian Kramp em 1808.

Índice

[editar] Definição

A função fatorial é normalmente definida por:

n!=\prod_{k=1}^n k\qquad\mbox{para todo }n\ge0.

Por exemplo,

5! = 5 × 4 × 3 × 2 × 1 = 120

Esta definição implica em particular que

0! = 1

porque o produto de nenhum número é 1 (ver produto vazio para uma descrição desse evento). Deve-se prestar atenção ao valor do produto vazio neste caso porque

  • faz com que a relação recursiva (n + 1)! = n!(n + 1) funcione para n = 0;

A função fatorial também pode ser definida (inclusive para não-inteiros) através da função gama:

z!=\Gamma(z+1)=\int_{0}^{\infty} t^z e^{-t}\, dt

A sequência dos fatoriais (sequência A000142 em On-Line Encyclopedia of Integer Sequences) para n = 0, 1, 2,... começa com:

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...

[editar] Aplicações

Os fatoriais são importantes em análise combinatória. Por exemplo, existem n! caminhos diferentes de arranjar n objetos distintos numa sequência. (Os arranjos são chamados permutações) E o número de opções que podem ser escolhidos é dado pelo coeficiente binomial. Veja também binômio de Newton.

{n\choose k}={n!\over k!(n-k)!}.

Os fatoriais também aparecem em cálculo. Por exemplo, no teorema de Taylor, que expressa a função f(x) como uma série de série de potências em x. A razão principal é que o n derivativo de xn é n!. Os fatoriais também são usados extensamente na teoria da probabilidade.

Os fatoriais são também frequentemente utilizados como exemplos simplificados de recursividade, em ciência da computação, porque satisfazem as seguintes relações recursivas: (se n ≥ 1):

n! = n (n − 1)!

[editar] Como Calcular Fatoriais

O valor numérico de n! pode ser calculado por multiplicação repetida se n não for grande demais. É isto que as calculadoras fazem. O maior fatorial, que a maioria das calculadoras suportam é 69!, porque 70! > 10100.

Quando n é grande demais, n! pode ser calculado com uma boa precisão usando a aproximação de Stirling:

n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n.

Esta é uma versão simplificada que pode ser provada usando a matemática básica do ensino secundário; a ferramenta essencial é a indução matemática. Esta é aqui apresentada na forma de um exercício:

\left({n \over 3}\right)^n < n! < \left({n \over 2}\right)^n\ \mbox{if}\ n\geq 6.\,

[editar] Logaritmo de Fatorial

O logaritmo de um fatorial pode ser usado para calcular o número de dígitos que a base de um fatorial irá ocupar. log n! pode ser facilmente calculado da seguinte forma:

\sum_{k=1}^n{\log k}

Note que esta função, demonstrada graficamente, é quase linear para valores baixos; mas o fator {\log n!} \over n cresce de maneira arbitrária, embora vagarosa. Por exemplo, este é o gráfico de seus primeiros 20 mil valores:

\ln(n!) \approx n\ln(n) - n + \frac {\ln(n)} {2} + \frac {\ln(2 \pi)} {2}.

Uma boa aproximação para log n! é fazer o logaritmo da fórmula de Stirling.

[editar] Generalidades

[editar] A função gamma

A função gama Γ(z) é definida para todos os números complexos z exceto os inteiros não positivos (z = 0, −1, −2, −3, ...). Relaciona-se aos fatoriais pelo fato de que satisfaz um relacionamento recursivo similar àquele da função fatorial:

n! = n(n - 1)!
Γ(n + 1) = nΓ(n)

Junto com a definição Γ(1) = 1 isto gera a equação

\Gamma(n+1)=n!\qquad\mbox{for all }n\in\mathbb{N},n\ge1.

Devido a este relacionamento, a função gama é frequentemente tida como uma generalização da função fatorial para o domínio dos números complexos. Isso é justificado pelas seguintes razões:

  • Significado compartilhado — a definição canônica da função factorial é o relacionamento recursivo mencionado, compartilhado por ambos.
  • Unicidade — a função gama é a única função que satisfaz o relacionamento recursivo mencionado para o domínio dos números complexos e é holomorfica e cuja restrição ao eixo positivo real é convexa no log. Ou seja, é a única função que poderia ser uma generalização da função fatorial.
  • Contexto — a função gama é geralmente usada num contexto similar ao dos factoriais (mas, é claro, onde um domínio mais geral for de interesse).

[editar] Multifactoriais

Uma notação relacionada comum é o uso de múltiplos pontos de exclamação para simbolizar um multifactorial, o produto de inteiros em passos de dois (n!!), três (n!!!), ou mais.

n!! denota o factorial duplo de n e é definido recursivamente por

n!!=   \left\{    \begin{matrix}     1,\qquad\quad\ &&\mbox{if }n=0\mbox{ or }n=1;    \\     n(n-2)!!&&\mbox{if }n\ge2.\qquad\qquad    \end{matrix}   \right.

Por exemplo, 8!! = 2 · 4 · 6 · 8 = 384 e 9!! = 1 · 3 · 5 · 7 · 9 = 945. A sequência de factoriais duplos para n = 0, 1, 2,... é :1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ...

Algumas identidades envolvendo factoriais duplos são:

n! = n!!(n - 1)!!
(2n)!! = 2nn!
(2n+1)!!={(2n+1)!\over(2n)!!}={(2n+1)!\over2^nn!}
\Gamma\left(n+{1\over2}\right)=\sqrt\pi{(2n-1)!!\over2^n}

Deve-se ser cuidadoso para não interpretar n!! como o factorial de n!, que deveria ser escrito (n!)! e é um número muito maior (para n>2).

O factorial duplo é a variante mais comumente usada, mas pode-se definir o factorial triplo do mesmo modo (n!!!) e assim por diante. Em geral, o k-ésimo factorial, notado por n!(k), é definido recursivamente como

n!^{(k)}=   \left\{    \begin{matrix}     1,\qquad\qquad\ &&\mbox{if }0\le n<k;    \\     n(n-k)!^{(k)},&&\mbox{if }n\ge k.\quad\ \ \,    \end{matrix}   \right.

[editar] Hiperfactoriais

Ocasionalmente o hiperfactorial de n é considerado. É escrito como H(n) e definido por

H(n)   =\prod_{k=1}^n k^k   =1^1\cdot2^2\cdot3^3\cdots(n-1)^{n-1}\cdot n^n

Para n = 1, 2, 3, 4,... os valores de H(n) são 1, 4, 108, 27648,...

A função hiperfactorial é similar à factorial, mas produz números maiores. A taxa de crescimento desta função, contudo, não é muito maior que um factorial regular.

[editar] Superfactoriais

Neil Sloane e Simon Plouffe definiram o superfactorial em 1995 como o produto dos primeiros n fatoriais. Assim, o superfatorial de 4 é

sf(4)=1!*2!*3!*4!=288.

No geral,

\mathrm{sf}(n)   =\prod_{k=1}^n k! =\prod_{k=1}^n k^{n-k+1}   =1^n\cdot2^{n-1}\cdot3^{n-2}\cdots(n-1)^2\cdot n^1.

A sequência de superfatoriais começa (de n=0) como:

1, 1, 2, 12, 288, 34560, 24883200, ... (sequência A000178 em On-Line Encyclopedia of Integer Sequences)

Esta idéia pode ser facilmente extendida para superduperfatorial como o produto dos primeiros n superfactoriais (iniciando com n=0), assim

1, 1, 2, 24, 6912, 238878720, 5944066965504000, ... (sequência A055462 em On-Line Encyclopedia of Integer Sequences)

e aí em diante, recursivamente para todos os fatoriais múltiplos, onde o m-factorial de n é o produto dos primeiros n (m-1)-factoriais, i.e.

\mathrm{mf}(n,m) = \mathrm{mf}(n-1,m)\mathrm{mf}(n,m-1)   =\prod_{k=1}^n k^{n-k+m-1 \choose n-k}

onde mf(n,0) = n para n > 0 e mf(0,m) = 1.

[editar] Superfactoriais (definição alternativa)

Clifford Pickover, no seu livro Keys to Infinity, de 1995, define o superfactorial de n, escrito como n$ (o $ deveria, na verdade, ser um sinal de fatorial ! com um S sobreposto) como

n\$=n^{(4)}n

onde a notação (4) denota o operador hyper4, ou usando a notação da seta de Knuth,

n\$=(n!)\uparrow\uparrow(n!)

Esta sequência de superfatoriais começa:

1\$=1
2\$=2^2=4
3\$=6\uparrow\uparrow6=6^{6^{6^{6^{6^6}}}}

[editar] Fatoração prima de fatoriais

A potência de p que ocorre na fatoração prima de n! é

\sum_{i=1}^{\infty} \lfloor n/p^i \rfloor

Esta fórmula permite que fatoriais grandes sejam fatorados eficientemente.

[editar] Ver também

  • Factorial primo

[editar] Ligações externas

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu